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Abstract

Based on different properties of structure of helical protein molecules some theories of bio-energy 
transport along the molecular chains have been proposed and established, where the energy is released by 
hydrolysis of adenosine triphosphate (ATP). A brief survey of past researches on different models and theories 
of bio-energy, including Davydov’s, Brown et al’s, Schweitzer’s, Cruzeiro-Hansson’s, Forner‘s and Pang’s models 
were fi rst stated in this paper. Subsequently we studied and reviewed mainly and systematically the properties 
and stability of the carriers (solitons) transporting the bio-energy at physiological temperature 300K in Pang’s 
and Davydov’s theories. However, these theoretical models including Davydov’s and Pang’s model were all 
established based on a periodic and uniform proteins, which are different from practically biological proteins 
molecules. Therefore, it is very necessary to inspect and verify the validity of the theory of bio-energy transport 
in really biological protein molecules. These problems were extensively studied by a lot of researchers and 
using different methods in past thirty years, a considerable number of research results were obtained. I here 
reviewed the situations and progresses of study on this problem, in which we reviewed the correctness of the 
theory of bio-energy transport including Davydov’s and Pang’s model and its investigated progresses under 
infl uences of structure nonuniformity and disorder, side groups and imported impurities of protein chains 
as well as the thermal perturbation and damping of medium arising from the biological temperature of the 
systems. The structure nonuniformity arises from the disorder distribution of sequence of masses of amino acid 
residues and side groups and imported impurities, which results in the changes and fl uctuations of the spring 
constant, dipole-dipole interaction, exciton-phonon coupling constant, diagonal disorder or ground state energy 
and chain-chain interaction among the molecular channels in the dynamic equations in different models. The 
infl uences of structure nonuniformity, side groups and imported impurities as well as the thermal perturbation 
and damping of medium on the bio-energy transport in the proteins with single chain and three chains were 
studied by differently numerical simulation technique and methods containing the average Hamiltonian way 
of thermal perturbation, fourth-order Runge-Kutta method, Monte Carlo method, quantum perturbed way and 
thermodynamic and statistical method, and so on. In this review the numerical simulation results of bio-energy 
transport in uniform protein molecules, the infl uence of structure nonuniformity on the bio-energy transport, 
the effects of temperature of systems on the bio-energy transport and the simultaneous effects of structure 
nonuniformity, damping and thermal perturbation of proteins on the bio-energy transport in a single chains and  
helical molecules were included and studied, respectively. The results obtained from these studies and reviews 
represent that Davydov’s soliton is really unstable, but Pang’s soliton is stable at physiologic temperature 300K 
and underinfl uences of structure nonuniformity or disorder, side groups, imported impurities and damping of 
medium, which is consistent with analytic results. Thus we can still conclude that the soliton in Pang’s model is 
exactly a carrier of the bio-energy transport, Pang’s theory is appropriate to  helical protein molecules.
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Introduction

As it is well known, the so-called life is just processes of mutual changes and 
coordination of the bio-material, bio-energy and bio-information, their synthetic 
movements and cooperative changes are total life activity in the live systems in the light 
of biophysicist’s view, where the bio-material is the foundation if life, the bio-energy 
is its center, the bio-information is the key of life activity, but the transformation and 
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transfer of bio-information are always accompanied by the transport of bio-energy 
in living systems [1]. Thus, the bio-energy and its transport are an fundamental and 
important process in life activity. As a matter of fact, many biological processes, such as 
muscle contraction, DNA reduplication, neuroelectric pulse transfer on the neurolemma 
and work of calcium pump and sodium pump, and so on, are associated with bio-energy 
transport in the life bodies, where the energy is released by the hydrolysis of adenosine 
triphosphate (ATP). Namely, an ATP molecule reacts with water, which results in the 
energy release of 0.43eV under normal physiological conditions. The reaction can be 
represented by

4 3 2
2 4 0.43ATP H O ADP HPO H eV       

where ADP is the adenosine diphosphate. Just so, there are always a biological 
process of energy transport from production place to absorption place in the living 
systems. Therefore, investigation of bio-energy transport along protein molecules and 
determination its rules have an important signiϐicance in life science. In general, the 
bio-energy is transported along the protein molecules. However, understanding the 
mechanism of the transport in living systems has been a long-standing problem that 
remains of great interest up to now.

Nonlinear excitation and theory of energy transport in protein molecules

Davydov theory of soliton excitation and its improvement

Generally speaking, the energy can be converted to a particular vibrational 
excitation within a protein molecule. A likely recipient exchange is the amide-I 
vibration. Their vibration is primarily a stretch and contraction of the C= O bond of 
the peptide groups. The amide-I vibration is also a prominent feature in infrared and 
Raman spectra of protein molecules. Experimental measurement shows that one of 
the fundamental frequencies of the amide-I vibration is about 0.205eV. This energy 
is about half the energy released during the ATP hydrolysis. Moreover, it remains 
nearly constant from protein to protein, indicating that it is rather weakly coupled to 
other degrees of freedom. All these factors can lead to the assumption that the energy 
released by ATP hydrolysis might stay localized and stored in the amide-I vibration 
excitation. As an alternative to electronic mechanisms [2-4], one can assume that 
the energy is stored as vibrational energy of the C=0 stretching mode (amide-I) in a 
protein polypeptide chain. Following Davydov’s idea [5-12],ones take into account the 
coupling between the amide-I vibrarional quantum (exciton ) and the acoustic phonon 
(molecular displacements) in the amino acid residues; Through the coupling, nonlinear 
interaction appears in the motion of the vibrartional quanta, which could lead to a 
self-trapped state of the vibrational quantum. The latter plus the deformational amino 
acid lattice together can travel over macroscopic distances along the molecular chains, 
retaining the wave shape, energy, momentum and other properties of the quasiparticle. 
In ϐigure 1, structure of α−helical protein this way, the bio-energy can be transported 
as a localized “wave packet” or soliton. This is just the Davydov’s model of bio-energy 
transport in proteins, which was proposed in the 1970s [5-7].

Davydov model of bio-energy transport works at  helical proteins as shown in 
ϐigure 1. Following Davydov idea [5-14, the Hamiltonian describing such system is of 
the form
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In Davydov’s model, where 0 =0.205ev is the amide-I quantum energy, -J is 
the dipole-dipole interaction energy between neighbouring amides, )B(B nn

 is the 
creation (annihilation) operator for an amide-I quantum (exciton) in the site n, un is 
the displacement operator of lattice oscillator at site n, Pn is its conjugate momentum 
operator, M is the mass of an amino acid residue, w is the elasticity constant of the 
protein molecular chains, and χ1 is an nonlinear coupling parameter and represents 
the coupling size of the exciton- phonon interaction in the protein molecules. The wave 
function of states of the systems in Davydov model is of the form [5-14]:

)t(D2 =  )t(1)t(| D = ( ) exp [ ( ) ( ) ] 10 .n n n n n n
n n

it B t P t u    
   
 

 
                  (2)

or *
1| ( ) ( ) exp ( ) ( ) 10n n nq q nq n

n q
D t t B t a t a   

         
  

                   (3)

where I0>=I0>ex Io>ph, I0>ex and I0>ph are the ground states of the exciton and 
phonon, respectively, )a(a qq

  is annihilation (creation) operator of the phonon with 

ware vector q, ( ) and n t  
n 2 2( ) | |nt D u D    and 2 2( ) | |  n nt D P D   and

 )t(D|a|)t(D)t( 1q1nq  
are some undetermined functions of time. The Davydov 

soliton obtained from Eqs.(1)-(2) in the semiclassical limit and using the continuum 
approximation has the from of
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which corresponds to an excitation localized over a scale r0/D, where
2 2
1 / (1 ) ,  D s wJ    2 2 2 1/2

D 0 0 0  G 4 ,     s / ,     v (w/M)DJ v v r   is the sound speed 
in the protein molecular chains, v is the velocity of the soliton, r0 is the lattice constant. 
Evidently, the soliton contains only one exciton because N=< ˆ( ) ( ) 1D Dt N t   . This 
shows that the Davydov soliton is formed through self-trapping of one exciton, its 

Figure 1: 
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binding energy is 4 2
1 / 3BDE Jw  .

Davydov’s idea yields a compelling picture for the mechanism of bioenergy transport 
in protein molecules and consequently has been the subject of a large number of works 
[15-103]. A lot of issues related to the Davydov model, including the foundation and 
accuracy of the theory, the quantum and classical properties and the thermal stability 
and lifetimes of the Davydov soliton have extensively been studied by many scientists. 
However, considerable controversy has arisen in recent years concerning whether 
the Davydov soliton is sufϐiciently stable in the region of biological temperature to 
provide a viable explanation for bio-energy transport. It is out of question that the 
quantum ϐluctuations and thermal perturbations are expected to cause the Davydov 
soliton to decay into a delocalized state. Some numerical simulations indicated that 
the Davydov soliton is not stable at the biological temperature 300K [36-49]. Other 
simulations showed that the Davydov soliton is stable at 300K [36-49], but they were 
based on classical equations of motion which are likely to yield unreliable estimates 
for the stability of the soliton [2-4]. The simulations based on the ID2> state in Eq.(2) 
generally show that the stability of the soliton decreases with increasing temperatures 
and that the soliton is not sufϐiciently stable in the region of biological temperature. 
Since the dynamical equations used in the simulations are not equivalent to the 
nonlinear dingeroSchr   equation, the stability of the soliton obtained by these numerical 
simulations is unavailable or unreliable. The simulation[9] based on the ID1> state in 
Eq. (3) with the thermal treatment of Davydov [15-20] , where the equations of motion 
are derived from a thermally averaged Hamiltonian, yields the confusing result that the 
stability of the soliton is enhanced with increasing temperature, predicting that ID1>-
type soliton is stable in the region of biological temperature. Evidently, the conclusion 
is doubtful because the Davydov procedure in which an equation of motion for an 
average dynamical state obtained from an average Hamiltonian, corresponding to the 
Hamiltonian averaged over a thermal distribution of phonons, is inconsistent with 
standard concepts of quantum-statistical mechanics in which a density matrix must be 
used to describe the system. Therefore, any fully exact quantum- mechanical treatment 
for the numerical simulation of the Davydov soliton does not exist. However, for the 
thermal equilibrium properties of the Davydov soliton, there is a quantum Monte 
Carlo simulation [64,65]. In this study the correlation characteristic of solitonlike 
quasiparticles occur only at low temperatures, about T<10k for widely accepted 
parameter values. This is consistent at a qualitative level with the result of Cottingham 
et al. [66,67]. The latter is a straightforward quantum- mechanical perturbation 
calculation, the lifetime of the Davydov soliton obtained by using this method is too 
small (about 10-12 - 10-13 sec) to be useful in biological processes. This indicates clearly 
that the Davydov solution is not a true wave function of the systems. A through study in 
terms of parameter values, different types of nonuniformity, different thermalization 
schemes, different wave functions, and different associated dynamics leads to a very 
complicated picture for the Davydov model [44-63]. These results do not completely 
rule out the Davydov theory, however they do not eliminate the possibility of another 
wave function and a more sophisticated Hamiltonian of the system having a soliton 
with longer lifetimes and good thermal stability.

Indeed, the question of the lifetime of the soliton in protein molecules is twofold. 
In Langevin dynamics, the problem consists of uncontrolled effects arising from the 
semiclassical approximation. In quantum treatments, the problem has been the lack 
of an exact wave function for the soliton. The exact wave function of the fully quantum 
Davydov model has not been known up to now. Different wave functions have been 
used to describe the states of the fully quantum-mechanical systems [21-32]. Although 
some of these wave functions lead to exact quantum states and exact quantum 
dynamics in the J=0 state, they also share a problem with the original Davydov wave 
function, namely that the degree of approximation included when J ≠ 0 is not known. 



The properties of nonlinear excitations and verifi cation of validity of theory of energy transport in the protein molecules

Published: April 09, 2018 062

Therefore, it is necessary to reform Davydov’s wave function. Scientists had though 
that the soliton with a multiquantum n ≥ 2, for example, the coherent state of Brown et 
al. [21-28], the multiquantum state of Kerr et al. [62,63] and Schweitzer et al. [66,67], 
the two- quantum state of Cruzeiro-Hansson [44-49] and Forner [74], and so on, 
would be thermally stable in the region of biological temperature and could provide 
a realistic mechanism for bio-energy transport in protein molecules. However, the 
assumption of the standard coherent state is unsuitable or impossible for biological 
protein molecules because there are innumerable particles in this state and one could 
not retain conservation of the number of particles of the system. The assumption 
of a multiquantum state (n>2) along with a coherent state is also inconsistent with 
the fact that the bioenergy released in ATP hydrolysis can excite only two quanta of 
amide-I vibration. On the other hand, the numerical result shows that the soliton of 
two-quantum state is more stable than that with a one-quantum state [74].

Cruzeiro-Hansson [44-49] had thought that Forner’s two-quantum state in the 
semiclassical case was not exact. Therefore, he constructed again a so-called two-
quantum state for the semiclassical Davydov system as follows [44-49]:

  + +
1 1 n m ex, 1

( ) {u },{P }, t B B 0nmn m
t 


                    (5)

where  nn BB  is the annihilation (creation) operator for an amide-I vibration 
quantum (exciton), u1 is the displacement of the lattice molecules, P1 is its conjugate 
momentum, and 0 ex is the ground state of the exciton. He calculated the average 
probability distribution of the exciton per site, and average displacement difference per 
site, and the thermodynamics average of the variable, ,2211 BBBBP    as a measure 

of localization of the exciton, versus quantity 2
1/  JW  and  TkIn B/1 in the so-

called two-quantum state, Eq.(5), where χ1 is a nonlinear coupling parameter related 

to the interaction of the exciton-phonon in the Davydov model. Their energies and 
stability are compared with those of the one-quantum state. From the results of above 
thermal averages, he drew the conclusion that the wave function with a two-quantum 
state can lead to more stable soliton solutions than that with a one-quantum state, and 
that the usual Langevin dynamics, whereby the thermal lifetime of the Davydov soliton 
is estimated, must be viewed as underestimating the soliton lifetime.

However, by checking carefully Eq.(5), Pang found that the Cruzeiro-Hansson wave 
function   does not represent exactly the two-quantum state. To ϐind out how many 
quanta the state Eq.(5) indeed contains, the expectation value of the exciton number 
operator ˆ

n nn
N B B  has to be computed in this state Eq.(5) , then the exciton numbers 

N contained are
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    

 

 

Therefore, the state, Eq.(5), as it is put forward in Ref.[44-49],deals with four 
excitons (quanta), instead of two excitons in contradiction to the author’s statements. 
Obviously, it is impossible to create the four excitons by the energy released in the 
ATP hydrolysis (about 0.43 eV). Thus the author’s wave function in Eq.(5) is still not 
relevant to protein molecules, and his discussion and conclusion are unreliable and 
implausible in that paper [44-49].

It is believed that the physical signiϐicance of the wave function, Eq.(5), is also 
unclear, or at least is very difϐicult to understand. As far as the physical meaning 
of Eq.(5) is concerned, it represents only a combinational state of single-particle 
excitation with two quanta created at sites n and m;  t},P{},u{ 11nm  is the probability 
amplitude of particles occurring at the sites n and m simultaneously. In general, n=≠m 
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and mnnm   in accordance with the author’s idea. In such a case it is very difϐicult 
to imagine the form of the soliton by the mechanism of self- trapping of the two quanta 
under the action of the nonlinear exciton-phonon interaction, especially when the 
difference between n and m is very large .Meanwhile, Hansson has also not explained 
the physical and biological reasons and the meaning for the proposed trial state. 
Therefore, we think that the Cruzeiro-Hansson representation is still not an exact 
wave function suitable for protein molecules. Thus, the wave function of the systems 
is still an open problem today, a correct theory of bio-energy transport need still to 
construct further.

Pang’s model of soliton excitation and properties of energy transport

From serious study of Davydov model we can ϐind that it is indeed too simple, i.e., 
it does not denote the elementary properties of the collective excitations occurring in 
protein molecules, and many improvements of it have also been unsuccessful. In fact, 
Davydov operation is not strictly correct. A basic reason for the failure of the Davydov 
model is just that it ignores completely the above important properties of the protein 
molecules. Let us consider the Davydov model with the present viewpoint. First, as 
far as the Davydov wave functions, both  21 DandD , are concerned, they are not 
true solutions of the protein molecules. On the one hand, there is obviously asymmetry 
in the Davydov wave function since the phononic parts is a coherent state, while 
the excitonic part is only an excitation state of a single particle. It is not reasonable 
that the same nonlinear interaction generated by the coupling between the excitons 
and phonons produces different states for the phonon and exciton. Thus, Davydov’s 
wave function should be modiϐied [72-103], i.e., the excitonic part in it should also be 
coherent or quasicoherent to represent the coherent feature of collective excitation 
in protein molecules. However, the standard coherent [21-28] and large-n excitation 
states [62,63] are not appropriate to the protein molecules due to the reasons 
mentioned above. Similarly, Forner’s and Cruzeiro-Hansson’s two-quantum states do 
not fulϐill the above request.

On the basis of the work of Cruzeio-Hansson, Forner, Schweitzer and Takeno and 
Pang, both the Hamiltonian and the wave function of the Dovydov model have been 
improved and developed by Pang [104-125], in which Davydov’s wave function has 
been replaced with a quasi-coherent two-quanta state for exhibiting the coherent 
behaviors of collective excitations [126-129] which are a feature of the energy released 
in ATP hydrolysis in the systems. The new wave function is represented [104-125] by

         

   

21 11 0
2!
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n n n n ex
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t t t t B t B
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 



                    

(6)

where nB and nB are boson creation and annihilation operators for the exciton,
0 ex and 0 ph are the ground states of the exciton and phonon, respectively un and  

Pn are the displacement and momentum operators of the lattice oscillator at site n, 
respectively. The  n t ,      n nt t u t      and      n nt t P t      are three 
sets of unknown functions, λ is a normalization constant. It is assumed hereafter that 
λ=1 for convenience of calculation, except when explicitly mentioned.

A second problem arises from the Davydov Hamiltonian [5-14]. The Davydov 
Hamiltonian takes into account the resonant or dipole-dipole interaction of the 
neighboring amide-I vibrational quanta in neighboring peptide groups with an 
electrical moment of about 3.5D, but why do we consider not the changes of relative 
displacement of the neighboring peptide groups arising from this interaction ? This 
means that it is reasonable to add the new interaction term   2 1 1 1n n n n n nu u B B B B  

     
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into the Davydov’s Hamiltonian for representing the correlations of the collective 
excitations and collective motions in the protein molecules, as mentioned above [76-
103]. Although the dipole- dipole interaction is small as compared with the energy of 
the amide-I vibrational quantum, the change of relative displacement of neighboring 
peptide groups resulting from this interaction cannot be ignored due to the sensitive 
dependence of the dipole-dipole interaction on the distance between amino acids in the 
protein molecules, which is a kind of soft condensed matter and bio-self-organization. 
Thus, the Davydov Hamiltonian is replaced by

 
     

2
2

int 0 1 1 1

1 1 1 2 1 1 1

1[ ( ) ]
2 2

n
ex ph n n n n n n n nn

n

n n n n n n n n n n
n

PH H H H B B J B B B B w u u
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u u B B u u B B B B
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                                                 (7)

Where 0 =0.205eV is the energy of the exciton (the C=0 stretching mode). The 
present nonlinear \ coupling constants are χ1 and χ1. They represent the modulations 
of the on-site energy and resonant (or dipole-dipole) interaction energy of excitons 
caused by the molecules displacements, respectively. M is the mass of a amino acid 
molecule and w is the elasticity constant of the protein molecular chains. J is the dipole-
dipole interaction energy between neighboring sites. The physical meaning of the 
other quantities in Eq.(7) are the same as those in the above explanations.

The Hamiltonian and wave function shown in Eqs.(6)-(7) are different from 
Davydov’s. We add a new interaction term,   2 1 1 1 ,n n n n n nn

u u B B B B  
     

into 
the original Davydov Hamiltonian. Thus the Hamiltonian now has better one-by –
one correspondence of the interactions and can represent the features of mutual 
correlations of the collective excitations and of collective motions in the protein 
molecules. However, we here should point out that the different coupling between the 
relevant modes was also considered by Takeno et al. [75-77,130-131] and Pang [78-
103] in the Hamiltonian of the vibron-soliton model for one-dimensional oscillator-
lattice and protein systems, respectively, but the wave functions of the systems they 
used are different from Eqs.(6)-(7).

Obviously, the present wave function of the exciton in Eq.(6) is not an excitation 
state of single particle, but rather a coherent state, more precisely, a quasicoherent 
state, because it retain only fore three terms of the expansion of a standard coherent 
state, which thus can be viewed as an effective truncation of a standard coherent state. 
It is clear that when small ϕn (t), i.e., 

ϕn (t) << 1, we can represent the wave function of the excitons, ϕn (t) >, in Eq.(6) [104-
125] by 
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                      (8)

 

The last representation in Eq.(8) is a standard coherent state. Therefore, the state of 
exciton denoted by the wave function ϕ (t) > has a coherent feature. In the meanwhile, 
we can verify that the new wave function in Eq.(6) is also normalized at λ=1. Since 
the condition of   2

1nn
t   is required in the calculation, then the above condition 

of ϕn (t) << 1 also is naturally satisϐied for the protein molecules consisting of several 
hundreds or thousands of amino acid residures. Thus the above representation in Eq.(8) 
is justiϐied and correct for the protein molecules. Since the coherent state is certainly 
normalized, then the wave function ϕ (t) > in Eq.(6), which can be represented as a 
standard coherent state, is exactly normalized at λ=1. Clearly, the above demonstration 
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for the normalization is correct, reasonable and credible because it is obtained from a 
strict mathematical, physical and biological theory. Thus we have not any reasons to 
doubt the normalization of wave function in Eq.(6). However, it is not an eigenstate of 
the number operator because of

         
2

ˆ ( ) 0 2 2 0n n n n n n ex n n ex
n n n n

N t B B t t B t B t t B        
                

     
   

   
(9)

However, in this state the numbers of quanta are determinate instead of 
innumerable. Since the third term in the exciton part in Pang’s wave function contains 
the coefϐicient of “1/2”, which guarantees that the third term in the exciton’s wave 
function contribute only one quantum, then we ϐind that the state contains number of 
exciton by computing the expectation value of the number operator

^

n nn
N B B in 

this state and sum over the states, i.e.,
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Therefore,  t > contains only two quanta, instead of one quantum or three quanta, 
i.e., it represents exactly a coherent superposition of the excitonic state with two quanta 
and the ground state of the exciton. Thus the new wave function not only exhibits the 
coherent feature of the collective excitation of excitons and phonons caused by the 
nonlinear interaction generated by virtue of the exciton-phonon interaction, which 
makes the wave function of the states of the system symmetrical, but also agrees with 
the fact that the energy released in the ATP hydrolysis (about 0.43 eV) can only create 
two amide-I vibrational quanta which, thus, can also make the numbers of excitons 
maintain conservation in the Hamiltonian, Eq.(7).Then it is correct and available. We 
here refer to it as a two quanta quasicoherent state. Obviously, it is completely different 
from Davydov’s, which is an excitation state of a single particle with one quantum and 
an eigenstate of the number operator. At the same time, the new wave function in Eq.(6) 
is either two- quanta states proposed by Forner [74] and Cruzeiro-Hansson [44-49] or 
a standard coherent state proposed by Brown et al. [21-28], and Kerr et al. [62,63,] 
and Schweitzer et al’s [66-67] multiquanta states. Therefore, the wave function, Eq.(6), 
is new for the protein molecular systems. In the meanwhile, the new wave function 
has the following advantages, i.e., the equation of motion of the soliton in the system 
can also be obtained from the Heisenberg equations of the creation and annihilation 
operators in quantum mechanics using Eqs.(6) and (7). However, it is improssible for 
the wave function of state of the system in other models, including the one-quanta 
state [5-14] and the two-quanta state [44-49]. Therefore, the above Hamitonian and 
wave function, Eqs.(6) and (7),are both new and appropriate to the protein molecules.

We know fron Eq.(6) that the phonon part depending on the displacement and 
momentum operators in the new wave function in Eq.(6) is a coherent state of the 
normal model creation and annihilation operators. A coherent state for the mode with 
wave vector q is denoted by [5-14,62-63,104-124] 
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we can get )()( tt   , where  )(t
 
is same in Eq.(6) and  )2sin()(2 0

21 qrMwq   
[62,63], r0 is the distance between neighboring amino acid molecules, and )( 

qq aa is 
the annihilation (Creation) operator of the phonon with wave vector q. Utilizing the 
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above results and the formulas of the expectation values of the Heisenberg equations 
of operators, un and Pn, in the state )(t .
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the time-dependent Shrodinger equation [79-105],
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The soliton solution of Eq.(11)[130-132] is thus
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The above treatment yields a localized coherent structure with size of order 2 π 
r0/μp that propagates with velocity v and can transfer energy ES01< 02 . Unlike bare 
excitons that are scattered by the interactions with the phonons, this soliton state 
describes a quasi-particle consisting of the two excitons plus a lattice deformation and 
hence a priori includes interaction with the acoustic phonons. So the soliton is not 
scattered and can spread through maintaining its form, energy, momentum and other 
quasiparticle properties after moving over a macroscopic distance. The bell-shaped 
form of the soliton in Eq.(13) also does not depend on the excitation method. It is self-
consistent. Since the soliton always move with velocity v less than that of longitudinal 
sound v0 in the chains then they do not emit phonons, i.e., its kinetic energy is not 
transformed into thermal energy. This is one important reason for the high stability 
of the new soliton. In addition the energy of the soliton state is below the bottom of 
the bare exciton bands, the energy gap between then being 3/J4 2

p  for small velocity 
of propagation. Hence there is an energy penalty associated with the destruction with 
transformation from the soliton state to a bare exciton state, i.e, the destruction of the 
soliton state requires simultaneous removal of the lattice distortion. We know that 
the transition probability to a lattice state without distortion is very small, in general, 
being negligible for a long chain. Considering this it is reasonable to assume that such a 
soliton is stable enough to propagate through the length of a typical protein structure. 
However, the thermal stability of the soliton state must be calculated quantitatively. 
The following calculation addresses this point explicitly.
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Although forms of the above equations of motion and the corresponding solution, 
Eqs.(11)- (13),are quite similar to those of the Davydov soliton, the properties of the 
new soliton have very large differences from the latter because the parameter values 
in the equation of motion and the solution Eqs.(11) and (13),including R(t), Gp and 
μp, have obvious distinctions from those in the Davydov model. A straightforward 
result of the new model is to increase the nonlinear interaction energy Gp (Gp = 2GD ×) 

   2
2 1 2 11 2 )       and the amplitude of the new soliton, and decrease its width 
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14 (1 )DG x w s   are the
 
corresponding values 

in Davydov model. Thus the localized feature of the new soliton is enhanced. Therefore, 
its stability against the quantum ϐluctuation and thermal perturbations is increased 
considerably as compared with the Davydov soliton.

The energy of the new soliton in Eq.(13) in the improved model can be represented 
[130-132] by
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The rest energy of the new soliton is WE
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In such a case, the binding energy of the new soliton is
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EBP is larger than that of the Davydov soliton.The latter is 4 2
1 3BDE x Jw  . We can 

estimate that the binding energy of the new soliton is about several decades larger 
than that of the Davydov soliton .This is a very interesting result. It is helpful to 
enhance thermal stability of the new soliton. Obviously, the increase of the binding 
energy of the new soliton comes from its two-quanta nature and the added interaction, 

  2 1 1 1n n n n n ni
u u B B B B  

    , in the Hamiltonian of the systems, Eq.(7). However, 
we see from Eq.(16) that the former plays the main role in the increase of the binding 
energy and the enhancement of thermal stability for the new soliton relative to the 
latter due to χ2 <  1. The increase of binding energy results in a signiϐicant change of 
property of the new soliton, which are discussed as follows.

In comparing various correlations to this model, it is helpful to consider them as a 
function of a composite coupling parameter like that of Young et al. [133], and Scott 
[15-20], that can be written as
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is the band edge for acoustic 

phonons (or Debye frequency). If 4παP << 1, it is said to be weak. Using widely accepted 
values for the physical parameters in the alpha helix protein molecule [5-125]:
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we can estimate that the coupled constant lies in the region of 4παP = 0.11 – 0.273, 
but 4 αD = 0.036 – 0.045 for the Davydov model. Hence, the new model is not a weakly 
coupled theory as compared with the Davydov model. Using again the notation of 
Venzel and Fischer [134], Nagy [135] and Wagner and Kongeter [136], it is convenient 
to deϐine another composite parameter [15-20]: 2 DJ w   . In terms of the two 
composite parameters, 4παP and γ, the soliton binding energy in the new model can be 
written by

 28 4 3 BP PE J ,  22 1 32 4 3   sol ex PM m                (18)

From the above parameter values in Eq.(18), we obtain γ = 0.08. Utilizing these 
values, the EBD/J versus 4πα relations in Eq.(18) are plotted in ϐigure 2.

However,  24 3 BD DE J  for the Davydov model, where 

 2' 1 2 4 3    sol ex PM m
 
and 2

14 2   D Dw ), then the EBD/J versus 4παD 

relation is also plotted in ϐigure 2. From this ϐigure we see that the difference of soliton 
binding energies between two models becomes larger with increasing 4πα.

Meanwhile, we see clearly from Eqs.(12)-(15) and (16) that the localized feature of 
the new soliton is enhanced due to increases of the nonlinear interaction and its binding 
energy resulting from the increases of exciton-phonon interaction in the improves 
model. Thus, the stability of the new soliton against quantum and thermal ϐluctuations 
is enhanced considerately. In fact, the nonlinear interaction energy forming new siliton 
in the new model is 

   2 2
P 1 2G 8 1 s w      3.8×10-21 J, and it is larger than the linear dispersion energy, 

J = 1.55×10-22 J, i.e., the nonlinear interaction in this model is so large that it can actually 
cancel or suppress the dispersion effect in the equation of motion ,thus the new soliton 
is stable in such a case according to the soliton theory [5-14,137] (Figure 2).

On the other hand,the nonlinear interaction energy in the Davydov model is 
 2 2

D 1G 4 1 s w   1.18×10-21 J, and it is about three to four times smaller than Gp.

Therefore, the stability of the Davydov soliton is weaker as compared with the new 
soliton. Moreover, the binding energy of the new soliton in the improved model is EBP = 
(4.16 – 4.3) ×10-21 J in Eq.(15), which is somewhat larger than the thermal perturbation 
energy, KBT = 4.13 ×10-21 J , at 300K and about four times larger than the Debye energy,

211.2 10B DK J      (there ωD is the Debye frequency).This shows that transition 
of the new soliton to a delocalized state by the heat energy can be suppressed by the 
large energy difference between the initial (solitonic) state and ϐinal (delocalized) state, 
which is very difϐicult to compensate for with the energy of the absorbed phonon. Thus, 
the new soliton is robust against quantum and thermal ϐluctuations, therefore it has a 
large lifetime and good thermal stability in the region of biological temperature .In 

Figure 2: The binding energy (EB) of the solitons in units of dipole-dipole interaction energy (J) vs the 
coupled constant, 4πα, relation in Pang’s model and the Dvydovy’s model.
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practice, according to Schweitzer et al.’s studies (i.e the lifetime of the soliton increases 
as μp and 0 0 p BT v K    increase at a given temperature)[67-68] and from the above 
results obtained we infer that the lifetime of the new soliton will increase considerably 
relative to that of the Davydov soliton due to the increae of μp and T0 because the latter 
are about three times larger than that of the Davydov model.

On the other hand ,the binding energy of the Davydov soliton,
1

4 2 21
BDE 3w J 0.188 10 J    , is about 23 times smaller than that of the new soliton, 

about 22 times smaller than KBT, and about 6 times smaller than KBΘ, respectively. 
Therefore, the Davydov soliton is easily destructed by the thermal perturbation energy 
and quantum transition effects. Thus we can naturally obtain that the Davdov soliton 
has only a very small lifetime, and is unstable at the biological temperature 300K. This 
conclusion is consistent at a qualitative level with the result s of Wang et al. [64,65] and 
Cottingham et al. [66,67].

In the above investigation of the inϐluences of quantum and thermal effects on 
soliton state, which are expected to cause the soliton to decay into delocalized states, we 
postulate that the model Hamiltonian and the wavefunction in the new improved model 
together give a complete and realistic picture of the interaction properties and allowed 
states of the protein molecules. The additional interaction term in the Hamiltonian gives a 
one-to-one correspondence of interactions in the new model. The new wavefunction is a 
reasonable choice for the protein molecules because it not only can exhibit the coherent 
features of collective excitations arising from the nonlinear interaction between the 
excitons and phonons, but also retain the conservation of number of particles and 
fulϐil the fact that the energy released by the ATP hydrolysis can only excite two 
quanta. In such a case, using a standard calculating method [2,26] and widely accepted 
parameters in Eq.(17) we can calculate the region encompassed of the excitation or the 
linear extent of the new soliton, 02 / pX r   , which is greater than the lattice constant 
r0 i.e., 0rX  . Meanwhile, we can explicitly calculate the amplitude squared of the 

new soliton using Eq.(13) in its rest frame, which is 2 2

0

| ( ) | sec ( )
2

p p x
x h

r
 

  . Thus the 

probability to ϐind the new soliton outside a range of width r0 is about 0.10. This means 
that the new soliton is very well localized in this condition. Meanwhile, this number 
can be compatible with the continuous approximation since the quasi-coherent soliton 
can spread over more than one lattice spacing in the system in such a case. Thus, this 
proves that assuming of the continuous approximation used in the calculation is valid 
because the soliton widths is large than the order of the lattice spacing, then the soliton 
stability is improved.

Finally we calculate the values of the main parameters in the new model by the 
above values. These values and the corresponding values in the Davydov model are 
simultaneously listed in table 1. From table 1 we can see clearly that the new model 
produces considerable changes in the properties of the soliton, for example, large 
increase of the nonlinear interaction, binding energy and amplitude of the new soliton, 
and decrease of its width as compared to those of the Davydov soliton. This shows that 
the soliton in the new model is more localized and more robust against quantum and 
thermal ϐluctuations, thus its stability is enhanced [5-14, 104-125], which implies an 
increase in lifetime for the new soliton. From Eq.(16) we also ϐind that the effect of the 
two-quanta nature is larger than that of the added interaction. We thus can refer to the 
new soliton as quasi-coherent state, which is novel and correct wave function.

Table 1: Comparison of parameters used in the Davydov model and Pang’s model.
Parameters

Models
μ G (×10-21J)

Amplitude of soliton 
A’

Width of soliton ∆x (×10-10m)
Binding energy of soliton 

EB (×10-21J)
Pang’s
Model

5.94 3.8 1.72 4.95 -4.3

Davydov
model

1.90 1.18 0.974 14.88 -0.188
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The necessity verifying the validity of these theoretical models

We exhibit the properties, successful and problems of different models in the 
above investigation, which but leaves behind many questions that are worth to study 
continuously. Actually, the above results were obtained analytically, based on many 
hypotheses, in which the protein molecules, which were used by the researchers, 
was regarded as a periodically and uniformly inϐinite-long chains composed of 
amino acid residues with same weight. Obviously, the proteins are not completely 
conformable with the biological protein molecules in the living systems. As it is 
known, the biological proteins are an ϐinite –long structure, which are composed of 
several hundreds or thousands amino acid residues with different molecular weights 
between 75 mp (glycine) and 204 mp (tryptophan), which correspond to variations in 
mass between  0.67 1.80M M M  , where M =114mp is the average mass of an amino 
acid residue and mp is the proton mass. And the biological proteins adhere all some 
side groups, which will affect the structure and dynamic features of protein molecules. 
This means that there are a structure nonuniformity and disorder in biological-protein 
molecules. These structural nonuniformities result necessarily in the ϐluctuations 
of the spring constant, the dipole-dipole interaction, the exciton-phonon coupling 
constant and the diagonal disorder in the equations of motion. Thus, the states of the 
solitons obtained from the theoretical models, which are established based on uniform 
proteins, will be changed under inϐluence of these structure disorders in the biological 
protein molecules. Otherwise, in the above investigation all physical parameters of the 
protein molecules were represented by their average values, and some approximation 
methods, such as long- wavelength approximation, continuum approximation, or 
long-time approximation, were also used in concrete calculations, which cannot be 
evidently used in the biological proteins. Careri et al. [19,138-143], demonstrated 
that even relatively small amounts of disorder in an amorphous ϐilm of acetanilide 
(ACN), a protein-like crystal, is enough to destroy the spectral signature of a “soliton”. 
Therefore, we have the reasons to doubt the real existence of the solitons and him 
correctness of the above theory of bio-energy transport in protein molecules.

At the same time, the biological proteins work always at physiological temperature 
and biological solution containing water molecules and other ions. The thermal 
perturbation and damping of medium arising from the temperature will also change 
the states and lifetimes of the solitons, which are the carrier of the bio-energy 
transport. These water molecules and other ions existed in the solution serve as some 
imported impurities to inϐluence the dynamic features of the protein molecules. On the 
other hand, for the α-helix protein molecules, which are constructed by three channels, 
there are also chain-chain interaction among the three channels, which carry also a 
dispersive effect and further inϐluence the states of the solitons in different models.

In such a case, we have the reason to doubt the validity of the above theories of 
bio-energy transport. This means that we must verify whether these models are 
appropriate to biological proteins? Whether can the models represent the real features 
of biological protein molecules? Namely, it is quite necessary to verify the validity of 
these theories in the biological protein molecules and to check the states and properties 
of the bio-solitons under the inϐluences of these structure nonuniformlity, chain-chain 
interaction and temperature and damping of the medium in the protein molecules.

However, what are methods which can be used to verify and check the correctness 
of the theories of bio-energy transport? The numerical simulation is just a best method 
studying and solving these problems. In fact, the numerical simulation can work at the 
protein molecules with a ϐinite length, it abandons the various approximations used in 
analytic calculations, and can include the effects of structure nonuniformity, imported 
impurities and side groups of proteins and inϐluences of temperature and damping of 
medium on the bio-energy transport. Therefore, the numerical calculation can be used 
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to study the properties of the solitons or bio-energy transport in the really biological-
protein molecules. In particle, a lot of scientists and researchers, containing Davydov, 
Scott et al., Wang X et al,  Forner and Pang XF, used the different numerical-simulation 
methods to investigate extensively the properties of bio-energy transport in single 
chain protein and t α-helix protein molecules with three channels, respectively, where 
a lot of researched results, which are enough to assess and check the correctness of 
theory of bio-energy transport in the biological proteins, involving Davydov’s and 
Pang’s models, were obtained. These numerical- simulation techniques contain the 
average Hamiltonian way of thermal perturbation, fourth-order Runge-Kutta method, 
Monte Carlo method, quantum perturbed way and thermodynamic and statistical 
method, and so on. We here review widely and in-depth the progress of different 
numerical simulations and give their results, which can be used to assess and verify 
the validity and availability of the theories of bio-energy transport mentioned above. 
For this purpose we here stated and discussed following four problems.

Properties of energy transport in uniform protein molecules

Determinations of value of basic parameters in energy transport theory

As it is known, the properties of bio-energy transport are closely related to the 
structure features of α-helix protein molecules. If the parameters of structure of proteins 
are different, then the property of the energy transport will also be changed. Therefore, 
correct determination of the values of these parameters contained in these theories is 
very important for verifying the validity of the theory of bio-energy transport. As it is 
known, there are ϐive basic parameters, the mass of amino acid residue, M, the spring 
constant, w, dipole-dipole interaction constant, J, exciton-phonon coupling constant 
χ1 and ground state energy ε0 in Davydov model, but another coupling constant χ2 
to be included in Pang’s model for the protein molecules, of single chain. For these 
parameters in the protein molecules, the widely accepted and available values are 
given in Eq.(17), where mp= 1.6710-27 kg is proton masse, r0 is lattice constant or 
distance between two amino acids. For α-helix proteins there is again a chain-chain 
interaction coefϐicient L, which is L=1.5meV, among the three chains. The above values 
are in essence their average values, such as M here is an average value of 20 different 
amino acids.

In these parameters the determination of exciton-phonon coupling constants plays 
a key part in the correctness of the bio-energy transport theory, meanwhile, it is also 
quite difϐicult to determine. As it is known, χ1 and χ2 represent the changes of ground 
state energy and dipole-dipole interactional energy when the amino acid residue 
displaces one unit distance, respectively. Experimental value of χ1 is in the range of 
35-62PN, its concrete value was obtained numerical calculation. A primary motivation 
for early numerical simulation of Davydov theory [5-14] was just to determine the 
magnitude of the exciton-phonon coupling coefϐicient χ1. Ones thought that χ1should be 
enough large to support soliton transport of the bio-energy in the α-helical protein. To 
proceed seriously, the following assumptions are made. (1) Initial amide-I energy was 
localized in a single turn of the helix, A typical initial condition to launch a symmetrical 
soliton is 0 0 0

11 12 13 2 / 3      and 0 0nn   for n>1.This means that two amide-I quanta 
were put into the ϐirst turn at one end of the helix at time t=0.

(2) All important dipole-dipole interactions were calculated. Then other larger 
interactions was considered and eight longer range interaction terms were also 
involved, except for the neighboring interactions J and A numerical code that embodied 
these two assumptions is developed in the early 1980s [15,16, 68,144]. This code 
denoted a helix of 200 turns, which is about the length of the alpha-helix in myosin, 
with free end boundary conditions. With the above initial conditions we can obtain that 
a threshold value for a soliton to be formed is the exciton-phonon coupling coefϐicient 
to equal to χ1 ≥ 50pN.
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If the two quanta of the above initial conditions were considered by the wave 
function proposed by Kerr et al. [145], (1/ )( ( ) ) 0Q

n n exn
Q t B    , then the 

threshold value will be increased.

However, the exciton-phonon coupling coefϐicient for a really biological alpha-helix 
protein molecules should be large enough to ensure the soliton formation, which but 
have been challenged by Mechtly and Shaw [70]. They constructed a wave function 
for the Davydov Hamiltonian, which is more accurate than Davydov’s product wave 
function because it is an eigenstate of the translation operator over the range of 0 ≤ 
4πα ≤ 1, where 4πα is a coupling parameter which was deϐined in Ref.[15-20]. Then 
its dynamic equations differ from the Davydov’s. Since numerical simulation of the 
dynamic equations with the above initial conditions indicates the soliton is formed 
only for 4πα >1. Thus Machtly et al. [70], obtained that the previous threshold value of 
χ1 for soliton formation is underestimated by a factor of at least four. In this case the 
effective mass of the soliton rises quadratically, then Heisenberg’s uncertainty relation 

/ 2 effx v M    becomes closer to that of a classical object. So, this result is doubted.

Rhodes and Nichclls [146] studied also this problem, in which he introduce a wave 
function that is based on a time dependent unitary transformation. The numerical 
calculations shows delocalization of the wave packet as is required by the above 
uncertainty relation.

From the above investigations we can conclude the following results.

(A) Numerical studies of Davydov model shows a threshold level of the exciton-
phonon coupling coefϐicient χ1 above which amide-I energy, that is initially localized 
on a single turn of the alpha helix, is converted into a soliton. The threshold level is χ1 
≥ 50pN, which agrees with independent experimental measurement of χ1 > 35pN to 
62pN 

(B). Numerical simulation of improved Davydov’s wave functions [70,146] that 
indicates the larger threshold values of χ1 ware misleading. The larger threshold values 
are an artifact of the wave packet feature of the improved wave function. Therefore it 
not credible.

The results of different methods of numerical simulation for the solution of 
dynamic equations in Davydov model in uniform protein chains

Hyman, McLaughlin, and Scott [68] studied ϐirst the properties of the bio-energy 
transport in alpha-helix protein molecules with three channels in Davydov model 
[5-14] using numerical simulation mother with the help of the computer at the Los 
Alamos Scientiϐic Laboratory in 1979. In this case the interaction among the channels 
is included in the Hamiltonian of the protein molecules. From the average Hamiltonian 
they gave the discrete forms of dynamic equation of the exciton and phonon in the 
biological protein with three channels, which are denoted by

0 1 1, 1, 1, 1, , 1 , 1[ ( )] ( ) ( )n n n n n n n ni W u u J L              


                
                    

(19)

2 2
1, , 1, 1 1, 1,( 2 ) ( ), 1, 2,3.n n n n n nM u w u u u        



                                    (20)

where , 2 2
1, ,

1 [ ( ) ( ) ]
2

n
n nn

u
W M w u u

t


 


  

 . Equations (19) and (20) were 

integrated numerically by them for studying the excited states of three chains of 
helical protein molecules. Each chain contained 200 peptide groups. The molecule was 
characterized by the following quantities: ε0 = 0.205eV; M= 70mP, ν0 = 104 cm / s, J = 1.55 
× 10-22 J, L = 2.46×× 10-22 J,
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w = 76N / m, χ1 = (5-7) × 10-11 N. The initial conditions at t=0 were taken as ϕ na=1 
for n=1 or =0 for n≠1, unx = 0. The calculations were performed for different values of 
the coupling parameter χ1 of intrapeptide Amide I excitations with displacements of 
their equilibrium positions. It was shown that for the above initial conditions distinct 
solitons are formed and propagate in the proteins with χ1≥3×10-11 N. Solitons with 
χ1 close to the critical value propagate with velocity ~1.26·103 m/s. Therefore, the 
distance 17000 nanometers, corresponding to the length of the alpha-helical myosine 
molecule in muscle ϐibers [5,6], could be traversed by solitons (where the friction 
forces of medium is neglected) within 130 PS.

Hyman et al. [68], found that the conclusion obtained from the numerical studies 
of Davydov’s dynamic model in the alpha-helical proteins conϐirm his prediction of 
the formation of solitons; these solitons are robust, localized, and a dynamic entity 
that coupled amide-I vibrations to longitudinal sound waves, thus they may provide 
an efϐicient mechanism of energy transport in biological systems. Both the numerical 
studies and analytical computations show a threshold level of nonlinearity below 
which the solitons will not be formed. A rough estimate indicates that this nonlinearity 
has the required order of magnitude.

Hyman et al’s result is interesting in that the process of formation of solitons from 
a deϐinite initial state is investigated and the role of the discreteness of the chain, 
which, apparently reduces to the fact that solitons are formed in the chain only with 
supercritical values of the coupling parameter χ1, determining the nonlinearity of the 
system, is clariϐied.

In 1979, Eilbeck made a computer ϐilm that demonstrates the propagation of an 
internal vibrational excitation of an edge group along a peptide groups (PG) chain. 
This ϐilm clearly shows that for an above threshold value of the coupling parameter 
χ1 between the vibrational excitation and displacements of PG along the molecular 
chains, the excitation propagates in the form of a soliton, i.e., in the form of a local 
pulse, whose shape and width remain constant during the motion. Eilbeck’s ϐilm is 
important for two reasons: ϐirst, it conϐirms the previous calculations performed at the 
Los Alamos Laboratory and, second, it clearly demonstrates the stability of solitons 
relative to interactions with sound waves. The sound wave was excited together with 
the soliton. Moving faster than the soliton, it reϐlected several times from the ends of 
the chain passing through the soliton and not causing any changes in it.

Eilbeck’s ϐilm and the numerical calculations in Ref. 68 show that the soliton 
forms at the very beginning of the peptide chain. Therefore, solitons can arise within 
comparatively short sections of alpha-helical proteins.

Scott [15-18,68] modiϐied further Davydov’s dynamic-equations for the alpha 
helix soliton to include ten additional dipole-dipole interactions and represent helical 
symmetry, Thus the equations (19)-(20) were replaced by

0 1 1, 1, 1, 1, , 1 , 1

'
2 1, , 1, , 1, 1

[ ( )] ( ) ( )

[( )] ( )] ]
n n n n n n n n

n n n n n n N P Q R S

T U V W X Z

i W u u J L

u u u u NF PF QF RF SF
TF UF VF WF XF ZF

       

     

       

  



     

   

        

        

    



       (21)

2 2
1, , 1, 1 1, 1,

' * * *
2 1. 1. 1, 1,

( 2 ) ( )

[ ( ) ( ) ]

n n n n n n

n n n n n n

M u w u u u     

     

  

      



   

   
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(22)     

where the J,L, N,F,Q,R,S,T, S, T,U,V,W, X, Z are the dipole-dipole interaction energies 
between pairs of amide-I bonds,which are 0.143, 0,231, 0.073, 0.03, 0.019, 0.012, 
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0.0089, 0.0073, 0.0037, 0.0030, 0.0022, 0.0017, respectively. The term “NFN” is 
shorthand for the dipole-dipole interaction between laterally adjacent amide-I bonds, 
which can be denoted as

ni 


 N , 1 , 1( ) ..., 1, 2,3....., 1, 2,3.n n n       

Scott et al. [15-18,68] found the solutions of the above equations by numerical 
calculation method, and obtained that there is a “window” for soliton formation when  
χ1 lies in the range of 0.35×10-10 N <χ1 ≤ 0.6×10-10 N, i.e., the exciton-phonon coupling 
parameter in alpha-helix protein molecules is large enough to transport the formation 
of Davydov solitons under normal physiological condition. Meanwhile, they also gained 
the following conclusions from the studies:

(1) It should be possible to create Davydov solitons by direct stimulation with 
infrared radiation of 6.06 μm (corresponding to an amide-I absorption at 1650 cm-1). 
This is clear because in the numerical study only bond energy was introduced as an 
initial condition.

(2) Davydov solitons should display a rather sharp internal resonance (related to 
exchange of energy between the three longitudinal spines of the alpha helix) with a 
period of about 2 psec or a free-space wavelength of about 600 μm.

(3) A piece of alpha-helix with n unit cells (i.e., 3n peptide units) may show a broad 
resonance (“Q”=’1) with a period of about 0.54n psec. Since the molecular weight 
(W100) of a strand of helix is about 114n, this resonance should appear at a free-space 
wavelength of 1.42W100×104 cm. For this resonance to appear at 3 cm (“X-band” in 
RADAR jargon) the molecular wavelength would be about W100 =21000. For the 
resonance to appear at 30 cm (1 GHz) W100 =210000.

(4) Mechanical effects induced directly by the soliton are limited to the kinetic part 
of the total energy. For the example studied here this is less than 0.02% (0. 0002) of 
the total energy.

Mechtly et al. [70], develop a theory of exciton evolution on a zero-temperature 
Davydov lattice which is free of certain deϐiciencies found in the standard Davydov theory. 
The approach makes use of a time-dependent unitary transformation on a Davydov 
Hamiltonian parametrized by a dimensionless lattice constant and a dimensionless 
exciton-phonon coupling constant α. The transformation generator is expanded in a 
normal-ordered series of multiphonon operators with expansion coefϐicients chosen to 
eliminate various terms in the transformed Schrodinger equation. At the one-phonon 
level, they obtained equations of motion which differ from those of Davydov. In the 
small-polaron transportless limit (inϐinite a) the equations are exact. In the large-polaron 
continuum limit (vanishing a) the equations become ϐield equations whose stationary 
solutions are those of Gross’s interpolation theory. To use numerical simulation method 
for a one-spine model of an α-helix (a =2.7) they found that the soliton (a moving 
dispersionless excitation) formation during evolution from a localized initial state above 
a threshold value of 4πα > 1, which is an order of magnitude higher than the threshold 
found in standard Davydov theory. This lower threshold for the Davydo theory is due to 
its inadequate treatment of the exciton- phonon interaction in weak coupling.

Since the value of the coupling-constant threshold obtained within Mechtly et al’s 
one-phonon approximation exceeds the range of values for the α-helix suggested by 
MacNeil et al. [70], it is tempting to conclude that an α-helix can not support solitons 
at T=O. Thus it would be straightforward to extend the present analysis to test this 
conclusion on more realistic models of an α-helix. As a check on the validity of the one-
phonon approximation itself, an extension of the present theory to the two-phonon 
level is done further.
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Förner [50] studied the changes of dynamical properties of Davydov soliton in an 
uniform protein molecular chain using a fourth-order Runge-Kutta method [147,148]. 
In this method the dynamic equations of simulation in Davydov model, which can be 
obtained from Eq.(1)-(2) , are as follows

0 1 1 1 1 1 1[ ( )] ( )n n n n n n n ni u u J J     


                         (23)

2 2
1 1 1, 1( 1) 1 1( )( ) ( ) )n n n n n n n n n n nP w u u w u u                                                  

 (24)

where '
0, exp[ / ]n n n nP M u i t  



    .

In this method, he used a time step size of 0.01ps, the total energy was conserved 
to 3eV (0.015%); a possible imaginary part of the energy ,which can occur due to 
numerical inaccuracies was zero to an accuracy of 0.002feV, the norm is conserved up 
to 0.4pp (parts per million). Otherwise, the chain ends are ϐixed and an initial excitation 
with one quantum is put at the site N-1, which N is the number of units chosen to be 
N=200 in the calculation. For the lattice un(0)=Pn(0)=0 were used.

This simulation result shows that there is a window of the characteristic parameters 
of χ1 and w for the occurrence of Davydov soliton, which are 60PN< χ1< 140PN and 
30N/m,< w < 90N/m. Meanwhile, the motions of Davydov soliton with changing 
the time and position are shown in ϐigure 3, where we see clearly that the soliton is 
dispersive at χ1 =20 PN, is gradually formed with increasing χ1, but the soliton is still 
somewhat dispersive at χ1=60PN and is stable at χ1=100PN, which is larger than the 
widely accepted value of 62PN.

The above results of numerical simulations in an uniform protein molecular chain 
exhibit clearly that the Davydov soliton can be form, but is not stable for small χ1, which 
is lower than the widely accepted values of physical parameters shown in Eq.(1). This 
conclusion is consistent from Lomdahl et al’s result of numerical simulation [62], which 
indicates that the solitons are nucleated from random initial conditions, but could be 
dispersed in motion along the chain as shown in ϐigure 3.

(b)

(c)

（a）

(b)

Figure 3: The changes of moved state of Davydov soliton with 2D  ansatz in an uniform protein 
molecular chain obtained by Förner [50].
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The properties of numerical simulation of energy transport in Pang’s model

The results in a signal protein chain: We ϐirst adopt the discrete dynamic 
equations (6)-(7) in Pang’s model to simulate numerically the dynamic properties of 
the soliton in single chain proteins. We now replace the ϕn (t) and βn (t) in Eqs. (6)-(7) by 
an(t) = an(t)rn+ ia(t)in and  qn (t), respectively, where arn and ain are real and imaginary 
parts of an(t), and use the transformation: an(t) → αn exp[Ir(t)t / h to eliminate the term 
R(t)an(t) in Eq. (11). Thus equations (11) and (12) can then rewritten as[104- 125]

1 1 1 1 1 2 1 1 1( ) ( ) ( )( )n n n n n n n n n nar J ai ai q q ai q q ai ai                                 (25)

1 1 1 1 1 2 1 1 1( ) ( ) ( )( )n n n n n n n n n nar J ai ai q q ai q q ai ai                               (26)

2 2 2 2
1 1 1 1 1 1 1 2 1 1 1 1( 2 ) 2 ( ) 4 [ ( ) ( )]n n n n n n n n n n n n n ny w q q q ar ai ar ai ar ar ar ai ai ai                         (27)

where Myq nn / , 2 2 2
n n na ar ai  . Equations (25)-(27) are dynamic equations, 

which can determine the states and behaviors of the soliton. We will obtain their 
solutions numerically using the fourth-order Runge-Kutta method [147-148]. 
Obviously, there are four equations for one peptide group. Therefore, for protein 
molecules of single chain constructed by N amino acids we have to solve a system of 
4N associated equations. To use the fourth-order Runge-Kutta method [147-148] we 
need ϐirst to discretize the equations, in which, the time be discretized and denoted 
by j, the step size of the space variable is denoted by h. In the numerical simulation, 
Pang et al., used eV for energy, 

0
A  for length, and ps for time [104-125]. The followings 

are details of the numerical simulation: a time step size of 0.0195ps, the total energy 
E=<Φ(t)|H|Φ(t)> was conserved to 0.0012% ( a possible imaginary part of the energy 
can be developed during the simulation due to numerical inaccuracies which was kept 
to below 0.001 feV), the norm is conserved up to 0.3pp (parts per million). A ϐixed chain 
with N units and an initial excitation in the forms of an(o)=Asech[(n-n0) (χ2 + χ1)2/4Jw] 
at the site n were used in this calculation, where A is the normalization constant,. For 
the lattice, the initial conditions of qn(0)=πn(0)=0 was applied. Pang et al., chose N=50 
in this simulations. Meanwhile, the simulation was performed using a data parallel 
algorithms and MALAB σοφτωαρε.

Utilizing the above average values for the parameter, which are now denoted by 
M , 0, , ,  w J  1 and 2, we calculate numerically the solution of Eqs.(25)-(27) by using 
the fourth-order Runge-Kutta method in uniform and periodic proteins, where |an|2 is 
the number density of the soliton occurring at the nth amino acid residue. Thus, we 
can plot the state of motion of the soliton in time-place. The result is shown in ϐigure 
4. This ϐigure shows that the amplitude of the solution can retain constancy. In ϐigures 
5,6 we show the propagation behavior of the solution for a long time period of 300Ps, 
and the collision property of two solitons, respectively. From the ϐigures we see that 
the solution is very stable while in motion for a long time period. Thus, Eqs. (25)- (27) 
have exactly a soliton solution in uniform and periodic proteins, which coincide with 
the above analytic results.

Figure 4: Soliton solution of Eqs. (25) - (27) in uniform chains.
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The results in α-helix protein molecules with three channels

In the meanwhile, we numerically simulated also the properties of the solutions 
of the dynamic equations for in the α -helix protein molecules with three channels. 
In this case, the Hamiltonian and the wave function in Eqs. (6) and (7) in Pang’s 
model[104-125] are now, respectively, replaced by
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where L is the coefϐicient of the chain-chain interactions among the three channels. 
From the time-dependent Schrödinger equation and the Heisenberg equations we can 
get
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Applying the method and way and fourth-order Runge-Kutta method [147-148] 
mentioned above we can simulate numerically the features of the solutions of Eqs. (28) 
- (31). In this case the initial condition of  2

0 1 2( ) sec [( )( ) / 4 ]na t A h n n Jw        
was used in the calculation, where α=1,2,3, A is the normalization factor. Meanwhile 
we used  M  =5.73×10-25kg= 114×3 amu (atomic mass units) , w =39N/m, ε0 =0.2035eV, 
J =9.68×10-4eV, 1 = 6.2×10-11N, 2 =(10-18)×10-12N and L =1.5meV for the α-helix 
protein molecules in the simulation.

Figure 5: State of Pang’s soliton in the cases of large time of 300ps and long distances of 400.

Figure 6: The collision behavior of two Pang’s solitons for Eqs. (25) - (27).
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The numerical solutions of Eqs. (28)-(29) for the α-helix protein molecules with 
three channels are shown in ϐigure 5. In ϐigure 7a we show the motion behaviors of the 
solution, where the initial condition of 2

0 1 2( ) sec [( )( ) / 4 ]na t A h n n Jw      
is simultaneously motivated on the ϐirst ends of the three channels. From this 
ϐigure we see that this solution can retain a clock shape while moving over a long 
distance in the range of the spacing of 400 amino acid residues at a time of 40ps 
without dispersion along the molecular chains, i.e., this solution is a soliton. This 
is similar to the above analytic and numerical results for the proteins with a single 
chain. In ϐigure 7b and 7c we plot the features of the solutions, with the initial 
conditions: ana(t=0)=0, here α=1,2, 2

3 0 1 2( ) sec [( )( ) / 4 ]na t A h n n Jw     and
2

0 1 2( ) sec [( )( ) / 4 ]na t A h n n Jw     , where α=1,2, an3(t=0)=0 are used, 

respectively. These initial conditions denote that the ϐirst ends of one channel and two 
channels are motivated, and that the other two channels and the single channel are not 
linked, respectively. Figure 7b indicates that two new waves with small amplitudes 
are generated due to the mutual interactions among the three channels, except for 
one soliton occurring on the channel linked by initial conditions. Although the two 
excitations are small, they can move over long distances along the two chains while 
keeping their amplitudes. Therefore, they are still solitons with small amplitudes. 
However, there exists a strange phenomenon in ϐigure 7c, in which the amplitudes 

of solitons generated in the two motivated chains are small, but the soliton in an 
unmotivated chain is larger, obviously, it is due to the superposition of waves induced 
by the other two chains. From this study we know that the solitons formed have higher 
energy when the initial conditions are simultaneously motivated on the ϐirst ends of 
the three channels.

We further study the collision property of solitons, set up from opposite ends of 
the channels for α-helix protein molecules; the result is shown in ϐigure 8a, where 
the above initial conditions simultaneously motivate the opposite ends of the three 
channels, where initial two solitons separating 100 amino acid spacings in each 
channel collide with each other at about 17ps. After this collision, the two solitons 
in each channel go through each other without scattering to propagate toward and 
separately along the three chains, satisfying the rules on collision of macroscopic 
particles, which demonstrates that the solitons have a corpuscle feature. In ϐigure 

(a)

(b)

(c)

Figure 7: Features of soliton solutions of Eqs. (28)-(29) for α-helix proteins under different initial
conditions.



The properties of nonlinear excitations and verifi cation of validity of theory of energy transport in the protein molecules

Published: April 09, 2018 079

8b and 8c we plot the collision features of the two solitons generated from opposite 
ends of the channels with the above initial conditions motivating the opposite ends 
of one channel and two channels, and where they are not linked with the opposite 
ends of the other two channels and the single channel, respectively. In the two cases 
the soliton feature of the solutions after collision is substandard, especially where the 
initial condition motivates only the opposite ends of the single channel, as shown in 
ϐigure 8b. Thus, the solutions of Eqs.(28)-(29) have a better soliton feature, where the 
opposite ends of the three channels are motivated simultaneously by the above initial 
conditions in the α -helix protein molecules. Hence, the soliton excited in the α -helix 
protein molecules has higher stability in the case of simultaneous motivation of the 
initial condition on the three channels.

In ϐigure 9 we show the states of soliton solutions of Eqs. (30) - (31) at a time of 120ps 
and at 300 amino acid spacings, where the above initial conditions are simultaneously 
linked on the ϐirst ends of the three channels. We see that the soliton still retains its 
amplitude and shape while moving. This result shows that the lifetime of the soliton is 
at least 120Ps., thus it is very stable.

The above results show that the states of Pang’s soliton are stable in an uniform 
protein molecular chain, thus the bio-energy transport can be carried out in this 
system.

On the other hand, Förner [149] studied also the states of Davydov soliton in α-helix 
proteins with three channels using wave function , in which he used the dynamic 
equations in Eqs.(12)-(13) at 22=0 and  5 1{ ( ) [ ( ) ( ) ( ) ( )]} ( )

2 2 m m m m n
m

W t q t t t q t a t        

=0, but χ1 is replaced by χ in Eqs.(12)-(13), where the symmetric A model (an1=an2=an3), 
the linear combination of the two degenerate E modes (an1=0, an2=an3=-1/ 2 ) and an 
asymmetric local excitation(L mode) of one unit on a single chain are used. In this case 
the result of numerical simulation for Davydov soliton is shown in ϐigure 10, where 
L= 1.54meV, w=13N/m. M=114mP, J=0.967meV and χ=62PN were utilized. Figure 10 
indicates that in the case of the A mode the soliton consists of three identical parallel-
moving localized excitations on all three chains, while, in the E mode the soliton moves 
only on two chains. In the case of the local excitation the soliton is found mainly on 
one chain, with a small fraction of the excitation transferred to the others, but the 

(a)

(b)

   (c)

Figure 8: The collision features of Pang;s solitons in different conditions.
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phenomenon reported by Scott [15,18] that solitons on one chain jump to another after 
some time have not observed. Maybe the built-up of a small fraction of the excitation on 
the other chains in the case of the asymmetric initial condition might lead to a transfer 
of the whole soliton after longer times.
Infl uence of structure nonuniformity on the energy transport in protein 
molecules

     The results in Davydov model

As mentioned above, Förner [50] obtained that Davydov soliton with 2D  is stable 
at χ1=100PN, which is larger than the widely accepted value of 62PN. Thus he study 
further the inϐluences of structure nonuniformity on the states of the Davydov soliton 
with 2D

 
in a single chain protein molecule using Eqs.(23)-(24) and the fourth-order 

Runge-Kutta method [147-148] in this case.

As mentioned above, protein molecules consist of 20 different amino acid 
molecules with weights between 75 mp (glycine) and 204 mp (tryptophane), which 
correspond to weight variations between 0.67 M  and 1.80 M . Therefore it is an 
aperiodic system, and there is a disordered distribution in mass sequences of amino 
acids. To study structure nonuniformity arising from the mass disorder distribution of 
amino acid residues, which results necessarily in changes of characteristic parameters 
in the dynamic equations in Davydov’s model, Förner introduced a random number 
generator to create random sequences of the mass along the chain. Disorder in the mass 
sequence destroys the soliton only for a very large disorder strength, with Mn values
0.01 50nM M M  . For 0.01 10nM M M   the soliton velocity is reduced from 
0.73 to 0.59 km/s, the sound velocity to 2.12km/s. In the case of the mass variation of 
natural amino acids ( 0.67 1.80nM M M  ) no change in soliton dynamics is virtually 
found, thus the average mass approximation is justiϐied. For the change of wn, he found 

Figure 9: The behavior of long-time motion for Pang’s soliton.

Figure 10: The time evolution of the Davydov soliton in the case of three interacting chains for three 
different kind of initial excitations (A,E, L modes) ; fi rst n=1-100, second chain, n=101-200, third chain, 
n=201-300 ([149]).
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no change in soliton dynamics up to random variation of ± 20% w . For ± 30% w  the 
soliton velocity is somewhat reduced to 0.68km/s. Finally the soliton disperses slowly 
and its propagation is irregular for ±40% w .

For the ϐluctuations of J alone or together with the natural mass variation the soliton 
is stable up to ±5% J . Therefore, Davydov soliton is far more sensitive to variation in 
Jn than in other parameters. If’ in addition Wn is aperiodic, the soliton is stable up to 
±10% w , while at ±20% w  slowly dispersive behavior appears. Finally, if χ1n, alone is 
aperiodic, or if χ1n, is aperiodic together with the natural mass variation, χ1n, can be 
varied up to ± 20% 1  without destruction of the soliton. However, if disorder in wn is 
also introduced, χ1n, can be varied up to ±15% 1 and wn up to ±40% w . Finally if all four 
parameters are randomly varied the maximal possible disorder that would still allow 
the existence of a soliton is ±20% w , ±2.5% J, and ±10% 1 . For this disorder strength 
he has calculated 10 different randomly chosen sequences to ϐind out whether the 
soliton properties depend only on the magnitude of disorder or also on the individual 
sequences. He found that only the soliton velocity is affected; in this case it varies 
between 0.61 and 0.80 km/s.

Figure 11 shows the effects of disorder in the sequence of masses of amino acid 
residues on the Davydov soliton by Förner[59], in which the mass at site 100 is 
increased to 100 M  and 200 M , respectively, but all other masses have been still 
kept equal to  M . We ϐind that no visible perturbation occurs in the soliton motion, 
a small fraction of the sound energy is trapped at the impurity and the major fraction 
is scattering back This denoted that an impurity at one site, which may be some other 
molecules bound to the protein at this site (like reactive centres as e.g. heme groups) 
does not disturb obviously the soliton, unless it does not inϐluence the coupling 
constant. In ϐigure 12 he gave the inϐluences of a random series of masses for the whole 
chain, Mk , on the Davydov soliton, where α is a random-number generator with equal 
probability within a prescribed interval and is in the ranges of 0.67 1.80k   and 
0.67 200k  . Figure 10 shows that the aperiodicity due to the ϐirst smaller intervals 
for k  does not signiϐicantly affect the Davydov soliton motion, but in the case of the 
larger intervals, the soliton disperses.

(a) (b)

Figure 11: The evolution of Davydov soliton as function of site and time in a single chain protein with 
an impurity at site 100 for different impurity massesof 100 2D (a) and 200 M (b), respectively.

(a) (b)

Figure 12: The evolution of Davydov soliton as function of site and time in a single chain protein 

with an random mass sequence 2D  for different intervals of the M , 0.67 1.80k   
(a) and 

0.67 200k  (b).
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Figure 13 shows Förner’s six results for the moved states of Davydov soliton 
under different ϐluctuations of w, J and χ1n (or xk) in the case of 0.67 1.80M M M   and 

1 62PN   [50,150]. Up to a random variation of ± 20% w , we see no changes in the 

dynamics of the soliton. For ±30% w ( Figure 13a) the soliton velocity is somewhat 
reduced to o.68km/s. Finally, for ±50% w (Figure 13b) the excitation decreases slowly 
and the propagation is irregular. Figure 13c shows the state of the soliton in the case of 
the ϐluctuations of ±5% J . and ±10% w  in which the soliton is stable, but it disperses 
slowly at ±20% w  as shown in ϐigure 13d. If disorder also in wn is introduced, the 

soliton is stable, when χ1n can be varied up to ±15% 1  and wn up to ±40% w  (Figure 
13e). If ϐinally, all parameters are randomly varied the maximal possible disorder 
which still allows the existence of a soliton is ±20% w , ±2.5%, J  and ±10 1 . Figure 

11f shows a dispersive example of the soliton at ±15% w , ±5%, J  and ±15% 1 .

The case of diagonal disorder εn he found that for an isolated impurity in the middle 
of the chain ( ,100n n  ) the soliton can pass the impurity only if ε <0.5 meV[50,150]. 
In other cases it is rejected or destroyed. In the case of a random sequence (

, 1,n n n    βn is random) only for  ε <1me can the soliton pass the chain. For 
higher values of ε the excitation disperses quickly.

Therefore, we can obtained from Förner’s study that the Davydov soliton in wave 
function 2D remains stable against strong disorder in the sequences of masses, spring 
constants, and coupling constants. But weak diagonal disorder and small dipole–dipole 
interaction constants can all destroy the solitons.

In the meanwhile, Förner [50,150-152] studied also the inϐluences of structure 
nonuniformity on the states of the Davydov soliton with wave function

1D , in which 
the quantum nature of the lattice plays a greater role than in the classical 

2D  state,. 
Thus he obtained that the Davydov soliton appears only from nonlinearities roughly 3 

Figure 13: The states of motion of Davydov soliton as function of site(k) and time(t) for some typical 

examples of nonuniformity at 0.67 1.80M M M  and 1 62PN 
 
(see Förner’s work [150].
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to 4 times larger than those in 2D  models, for example the Davydov soliton with 1D  
ansatz is stable at 1 

=140PN, which is more larger than the widely accepted value of 
62PN. The sensitivity of such solitons to these disorders is practically opposite that 
for the 2D  state. Thus it is not necessary to study further the inϐluences of structure 
nonuniformity of protein molecules on the states and properties on Davydov’s solitons.

The results in Pang’s model

The results in single chain protein

In order to study the inϐluence of a random series of masses on Pang’s soliton, Pang 
introduced a parameter αk, representing the size of the disorder distribution, which 
is a random-number generator with equal probability within a prescribed interval 
and can denote the mass at each point in the molecular chain, i.e. Mk= Mk  [38-46]. 
Numerical simulation shows that when the αk is small, such as, an interval 0.67 M 

kM 1.80 M , the state of Pang’s soliton is not inϐluenced. Up to the αk intervals of, for 
example, 0.67≤αk≤300, the stability of Pang’s soliton may still remain, but in the case of 
large intervals such as 0.67  α k 700, the vibrational energy is dispersed, as shown 

in ϐigure 14. The interval of 0.67≤αk≤300, over which the motion of Pang’s soliton is 
unperturbed, is evidently larger than the above natural interval of masses of amino 
acids. Thus, Pang’s soliton is very robust against mass disorder in proteins.

However, in the above calculation we do not introduced the ϐluctuations of the 
spring constant w, dipole-dipole interaction constant J, coupling constant (χ1 + χ2), and 
the ground state energyε0 arising from the structure nonuniformity. According to the 
above Förner’s method [50,150-152] the changes in parameters are represented by 
the ϐluctuations of the average increments, w=w- w , J=J - J , (χ1 + χ2)=(χ1 + χ2)-(

21   ) and ε0= ε0 -ε0, respectively, where w, J,((χ1 + χ2) and ε0 are the values of the 
parameters in the protein molecules with the structural disorders. However, for the 
variation in ground state energy arising from imported impurities or from the mass 
disorder, we use generally the random number generator, n , to designate its random 
feature, i.e., the ∆ ε0 is denoted by ∆ n 0 . In the following we study the collective 
effects of the ϐluctuations of the parameters on Pang’s soliton.

In ϐigure 15. we show the changes in stability of Pang’s soliton with increasing 
ϐluctuations of the spring constant w in the case of a mass interval of 0.67αk,

 2. 

We see that up to a random variation of ±40% w , the dynamics of the soliton have 
not changed. For ± 50% w , the soliton disperses somewhat, but its velocity is only 
somewhat diminished, when compared to the earlier w  case. Finally, for ±70% w , the 

soliton disperses and its propagation is irregular,as shown in ϐigure 15.

(a) (b)

Figure 14: The state of Pang’s soliton at 0.67<αK<300(a) and at 0.67< 2D
K<700 (b).
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The soliton in Pang’s model [113-125] is also more sensitive to the variations in the 
dipole-dipole interaction constant J caused by the structural disorder when compared 
with the other parameters. The simulation shows that for a variation in J alone, the 
soliton is stable up to ±9% J , and it disperses at J =±15% J . If we simultaneously 
consider the collective effects of disorder of mass sequence and ϐluctuation of J on 
Pang’s soliton, then its state is obviously changed. In ϐigure 16 we show the collective 
effect of the ϐluctuations J =±10% J , =±20% J , on the soliton in the case of a mass 
interval of 0.672. From these ϐigures we see clearly that Pang’s soliton is stable at 
J10% J , but it disperses signiϐicantly at J =±20% J .

The numerical calculation shows that, arising from the disorder of structure, if the 
coupling constant (1+2) alone is changed, (1+2) can be varied to ±25% ( 21   ), 
and in this case Pang’s soliton does not disperse. However, for a ϐluctuation together 
with natural mass variation, the stability of Pang’s soliton will be changed. In ϐigure 
17 we illustrate the changes in the states of new solitons with increasing ϐluctuations 
of (1 and 2) at 0.67 M M 2 M . We see from this ϐigure that only at ∆ (1+2)< 
30%(1+2) Pang’s solitons are stable, but they obviously disperse at ∆ (1+2)=35% (

21   ).

It is quite necessary to collect the combined effect of random variations of the 
above physical parameters resulting from structural disorders on the properties of 
Pang’s soliton. The changes of states of solitons with increasing interaction constants 
in the case of 0.67  k2 and J =±10% J is shown in ϐigure 18. We ϐind no change 
in the dynamics of Pang’s soliton at w=± 25% W  and J = ± 10% J , but it begins 
dispersing at w= 30%w , 15%J J   , and disperses considerably at w= 

25%w , 15%J J   .
We are more interested in the collective effect of simultaneous random-variations 

of the above ϐive parameters resulting from structural nonuniformity on Pang’s soliton. 
In general, Pang’s soliton is very sensitive to the diagonal disorder, which is the change 
in ground state energy, ∆ 0, caused by different side groups of amino acids and local 
geometric distortions due to the impurities imported. We found that for an isolated 
impurity in the middle of the chain, which causes the change in the ground energy 
to be ∆ 0= n , the soliton can pass the impurity only if <1meV. In other cases it 

(a) (b)

(c) (a)

Figure 15:  States of Pang’s soliton in the case of 0.67 k  2 and changes W= 20%w (a), 

30%w (b), 60%w  (c), 70%w  (d).
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is reϐlected or dispersed. In the case of a random sequence, ε0= , 0.5,n n n   

is a random parameter, and only when ε<1meV can the soliton pass the impurity to 
propagate along the chains. For higher values of ε the soliton is dispersed. When the 
diagonal disorder occurs together with ϐluctuations of the other four parameters, the 
state of Pang’s soliton is changed obviously. The states of solitons with an increasing 
spring constant in the cases of 0.67 α k2 , (1 + 2)= 5% ( 21   ), J=±5% J  and 

∆ε0= , 0.5,n n   
   
ε<1meV are given in ϐigure 19. We see from this ϐigure that when 

the ϐive parameters are all randomly varied, a maximal disorder that would occur 
still with the soliton in motion, is w=±10% w , J=±5% J , (1 + 2)= ±5%( 21  

), 0.67 M M 2 M  and ∆ε0= , 0.5,n n   
  
ε=1meV. In other cases the soliton is 

dispersed or reϐlected by the impurity.

In summary, we have looked at the stability of Pang’s solitons under the inϐluence 
of various structural disorders in the proteins via the fourth-order Runge-Kutta 
method [23-24] which can help identify and check the stability of state of Pang’s 

(a) (b)

Figure 16: The states of Pang’s soliton in the case of the mass interval 0.67 
k   

2 as it changes at 

10%J J   (a) and 20%J J   (b).

(a) (b)

Figure 17: The states of Pang’s soliton in the case of the mass interval 0.67 
k   

2 as it changes at 

 1 230%    (a) and  1 235%    (b).

(a) (b)(a) (b)

(c)

Figure 18: The stability of Pang’s soliton at 0.67 k  2 and 1 2( )     1 210%     

and w  30%w , 15%J J   (a) and w  25%w , 15%J J    (b) and w 

25%w , 10%J J   (c).
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soliton transporting bio-energy. The above results obtained show that the soliton in 
Pang’s model [113-125] is very robust against these structural disorders. However, 
the Davydov soliton with one quantum is not so, and smaller structural disorders in the 
proteins will destroy its stability as mentioned above, which are obtained by Forner er 
al. [50,149-152], what are the reasons why the soliton in Pang’s model is comparably 
more stable than Davydov’s? Clearly, this is due to the fact that the Pang model with 
a quasi-coherent two-quanta state differs from the Davydov model with one quantum 
state. Although Eqs. (25)- (27) can become the dynamic equations in the Davydov 
model when 2=0 and na2 are replaced by nA  (in such a case, the normalization 
condition of the Davydov wavefunction then becomes  

n
n

n
n tatA 2)(2)( 22 . 

This again shows clearly that the new wavefunction in Pang model contains exactly 
two quanta), the stability of Pang’s soliton is greatly increased due to considerable 
increases of nonlinear coupling energy, Gp, and a binding energy, EBP, which are larger 
by about three and twenty times than Davydov’s soliton[113-125].

The results in α-helix protein molecules with three channels in Pang’s model.

We investigated further the properties of Pang’s soliton in α-helix protein molecules 
with three channels by fourth order Runge-Kutta method [147-148] and .using the 
above methods.

(1) The individual inϐluences of different ϐluctuations and disorders on the motion 
of Pang’s soliton.

(2)   In accordance with the above method we study the inϐluences of the random 
series of masses, in which whether of the smaller or larger intervals for αk, such 
as, 0.67≤αk≤100 or 0.67≤αk≤300, on Pang’s soliton. This result manifests that this 
nonuniformity does not signiϐicantly affect the stability of Pang’s soliton, its vibrational 
energy is not dispersed as shown in ϐigure 20, where other parameters take mean 
values mentioned above. The interval over which Pang’s soliton moves unperturbed 
is evidently larger than the variation in the masses of the natural amino acids 
(0.67≤αk≤1.80). Therefore, the soliton in Pang’s model is very robust against mass 
nonuniformities in α-helix protein molecules [113-123].

Numerical simulation results show that we do not ϐind any changes in the dynamics 
of the soliton up to a random ϐluctuation of ±25% W . The results of our calculations 
are shown in ϐigure 21, in the cases where ϐluctuations are ±15% W and±25% W
, respectively. For ± 30% W , Pang’s soliton velocity is only somewhat diminished 
when compared with the case of W . Finally, for ±40% W , Pang’s soliton disperses 
completely and propagation is irregular.

The soliton is very sensitive to variations in the dipole-dipole interaction J in the 
α-helix protein molecules. The soliton is stable up to 5% as shown in ϐigure 22, where 
we denote the features of the solitons under changes of ±3% J  and △J=±5% J , but the 
soliton disperses at △J=±7% J .

(a) (b)

Figure 19: The states of Pang’s soliton at 0 , 0.5, 1n n meV       
 
and 5%J J   , 

1 2( )     1 25%    ,0.67 k  2 for w  10%w  (a), w   20%w (b).
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In ϐigure 23 we exhibit the changes of feature of Pang’s soliton under the inϐluence 
of ϐluctuations of Δ(1 + 2 )=±6%( 21   ) and ±9%( 21   ).These ϐigures show that 
Pang’s solitons are stable when (1 + 2) varies up to ±9%( 21   ). In the meanwhile, 
Pang’s solitons disperse and split gradually into some small waves when (1 + 2 ) are 
larger than this value.

With |βn |≤0.5 for ε==0.57meV and 1.26meV, we show the behaviors of Pang’s 
soliton in ϐigure 24.

These ϐigures show that in the case of a random sequence, only if ε<1.3meV and |βn 
|≤0.5 can Pang’s soliton pass through the chain and is stable. For higher values of ε, 
Pang’s soliton is reϐlected or dispersed.

In ϐigure 25 we show the variations in features of Pang’s solitons due to the 
ϐluctuations of ΔL=±5% L  and ±6% L . These ϐigures show that the soliton is stable 
only if ΔL<±7% L . From the simulation we know that the smaller the ϐluctuation of the 
chain-chain interaction, the higher the stability of Pang’s soliton. When ΔL=0 and L=0, 
the stability of Pang’s soliton is the highest.

 (3) Associated effects of the ϐluctuations of six structural parameters on the Pang’s 
solitons.

We studied the associated inϐluences of the change of mass of amino acids and the 
ϐluctuations in dipole-dipole interaction, the exciton-phonon coupling constant, the 
spring constant, the diagonal disorder, and the chain-chain interaction arising from the 
structure disorder of the α-helix protein molecules, on the behaviors of Pang’s soliton. 

(a) (b) 

Figure 20: The states of Pang’s solitons in the nonuniform masses of 0.67<αK<100 (a) and 
0.67<αK<300(b).

(a) (b) 

Figure 21: The states of Pang’s solitons at the fl uctuations of ∆W=±15% W (a) and∆W=±25% W (b).

(a)  (b) 

Figure 22: The features of Pang’s solitons under the changes △J=±3% J (a) and △J=±5% J (b).
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In ϐigure 26 we show the changes of property of Pang’s solitons under the inϐluence of 
different ϐluctuations of structure parameters, in which ϐigure 26a denotes the state 
and behaviour of Pang’s soliton with ϐluctuations of 0.67<αK<2, ΔW=±5% W , ΔJ=±1%
J  Δ(1 + 2)=±1%( 21   ) and ΔL= ±1% L ; ϐigure 26b results when 0.67<αK<2, 

ΔW=±10% W , ΔJ=±2% J  Δ(1 + 2)=±3%( 21   ) and ΔL= ±2% L ; ϐigure 26c results 
when 0.67< αK <2, ΔW=±10% W , ΔJ=±2% J  Δ(1 + 2)=±5%( 21   ) and ΔL= ±2% L
; ϐigure 24d is the result when 0.67<αK<2, ΔW=±10% W , ΔJ=±2% J  Δ(1 + 2)= ±6%(

21   ) and ΔL= ±2% L . From these ϐigures we see clearly that Pang’s solitons shown 
in ϐigure 26a, b and c are very stable under the actions of different structure disorders, 
but Pang’s soliton shown in ϐigure 26d is already unstable due to the inϐluence of the 
structure disorder, its amplitude changes, thus it is already dispersed. This manifests 
that the solitons excited in ∆-helix protein molecules are not stable in cases of large 
structure disorders. In comparing these results in ϐigure 26 with those shown in ϐigure 
21-25, we ϐind that the collective effects of these structure disorders and quantum 
ϐluctuations change the states and features of Pang’s solitons, making their amplitudes, 
energies and velocities decrease, although such inϐluences cannot destroy the solitons, 
which can still transport steadily along the molecular chains while retaining energy 
and momentum when the quantum ϐluctuations are small, i.e., Pang’s the solitons 
are quite robust against these disorder effects. However, Pang’s the solitons may be 
dispersed or disrupted in cases of very large structure disorders.

(4) The collective effects of various nonuniformities on the motion of Pang’s soliton.

We ϐiwwnally study the collective effects of the change in mass of amino acids and 
the ϐluctuations of dipole-dipole interaction, the exciton-phonon coupling constant, the 

(a) (b) 

Figure 23: The changes of phase of Pang’s soliton as affected by fl uctuations of ∆(1 + 2 )=±6%( 1 2  ) and ∆(1 

+ 2)=±9%(
1 2  ), respectively.

( a) (b) 

Figure 24: The behavior of Pang’s solitons due to the changes ∆ε0=ε|βn| with |βn | <0.5 and ε=0.57meV(a) and 
1.26meV(b), respectively.

(a) (b) 

Figure 25: The variations of feature of Pang’s solitons in fl uctuation of ∆L= ±5% L (a) and ±6% L (b).
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spring constant, the diagonal disorder and the chain-chain interactions arising from 
the structure disorder of α-helix protein molecules, on the properties of Pang’s soliton. 
The results obtained are denoted in ϐigure 27, in which ϐigure 27a represents the 
features of Pang’s soliton formed under ϐluctuation conditions of 0.67<αK<2, ΔW=±3%

W , J=±1% J  Δ(1 + 2 )=±1%( 21   ), ΔL= ±1% L  and Δε0=ε|βn|, 

 ε=0.35meV, |βn|<0.5; ϐigure 27b results when 0.67<αK<2, ΔW=±6% W , J=±1% J  

, Δ( 21   )= ±2%( 21   ), ΔL= ±1% L  and Δε0=ε|βn|, ε=0.1meV, |βn|<0.5; ϐigure 
27c results when 0.67< αK <2,ΔW=±8% W , J=±1% J  Δ( 21   )=±3%( 21   ) 
and ΔL= ±1% L  and Δε0=ε|βn|, ε=0.1meV, |βn|<0.5. We see from this ϐigure that in these 
conditions the intrinsic nature of Pang’s soliton during bio-energy transport in the 
 -helix protein molecules can still be maintained, but the soliton begins to disperse 
when these structure disorders are larger than the values 0.67< αK <2, ΔW=±8% W
, ΔJ=±1% J  Δ( 21   )=±3%( 21   ) and ΔL= ±1% L  and Δε0=ε|βn|, ε=0.1meV, 
|βn|<0.5. Therefore, we can conclude that the soliton in Pang’s model is exactly robust 
against various structure disorders of the α-helix protein molecules.

 Hwowever, the actual degree of structure nonuniformity or disorder in protein 
molecules unknown up to now. The structure nonuniformity in masses of amino acid 
residues should smaller than the mass interval of the natural amino acid residues 
since the proteins are a biological self-organization with higher order, in which 
the amino acid residues are not free particles but are covalently bound in the main 
polypeptide chain. The structure nonuniformity in the other parameters should be 
small due to small inϐluences of the side groups on the geometry of the main chain and 
disorder distribution of the mass. Thus we can conclude that the naturally occurring 
the structure nonuniformity in the parameters should be smaller than the maximal 
structure nonuniformity in which the Pang’s soliton, is stable. Natural structure 
nonuniformity may interfere with the solitons only when J and ε are obviously varied 
since the stability interval in these cases is smaller relative to other parameters. 
However, the ϐluctuations of J and ε for Pang’s soliton are also larger as mentioned 
above. Thus it is not necessary to doubt that the structure nonuniformity or disorder 
in protein molecule can destroy the states of soliton in Pang’s model, thus the soliton 
transport of bio-energy can still maintain although the inϐluences of natural structure 
nonuniformity or disorder on it occur in biological protein molecules.

The infl uences of temperature of systems on the energy transport in protein 
molecules

 

(a) (b) 

( c) (d) 

Figure 26: The changes in properties of the solitons under the infl uence of different fl uctuations, here (a) is the 
result when 0.67<αK<2, ∆W=±5%, △J=±1% J  ∆(1 + 2 )=±1%( 1 2  ) and ∆L= ±1% L ; (b) is the result when 
0.67<αK<2, ∆W=±10% W , ∆(1 + 2)= ±3%( 1 2  ), △J=±2% J  and ∆L= ±2% L ; (c) is the result when 0.67< αK <2, 

∆W=±10%, ∆J=±2% J ∆(1 + 2)=±5%( 1 2  ) and ∆L= ±2% L ; and (d) is the result when 0.67<αK<2, ∆W=±10%

W , △J=±2% J , ∆(1 + 2)=±6%( 1 2  ) and ∆L= ±2% L . ε=0.35meV, |βn|<0.5.
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As it is known, the thermal stability and lifetime of the solitons, which transport 
the bio-energy in protein molecules, at the physiological temperature 300K are a 
key indicator to inspect and check the validity of the theory of bio-energy transport 
and true existence of solitons. Therefore, plenty of researchers study this problem 
using different methods. The following statements are a simple survey on these 
investigations.

Investigations on thermal stability of the Davydov solitons in range of 
physiological temperature in uniform protein molecules

First of all, Davydov investigated [153] the inϐluences of thermal perturbation 
at 300K on the soliton through the thermodynamic average of Hamiltonian of 
the protein molecules , in which he thought that the thermal perturbation results 
in the thermal excitation of the phonons in this system. Thus the Davydov’s 
wave function, 1D , in Eq.(2) was replaced by 1 | ( ) ( )D t t    , where

1/2{ } ( !) ( ) 0q
q q q q phq q

a         . If the Hamiltonian of the system 
in Eq.(1) in Ref.[1].is represented by the creation and annihilation operators of the 
exciton and phonon, Davydov denoted the thermodynamic average of the Hamiltonian 

by 'H H 
 , where int( ) *ex phH H H U H U       with

 
and ( ) 0n ph

t U  
*exp{ ( ) ( ) } 0nq q nq q phq

t a t a    . Utilizing familiar method Davydov obtained the 

dynamic equation of the soliton in this case. From this dynamic equation Davydov 
obtained that the effective mass and nonlinear interaction energy depend on the 
temperature of the system, i.e., with increasing temperature the effective mass of 
Davydov soliton increases and the nonlinear interaction energy decreases, the soliton’s 
size increases and its properties come ever closer to these of an exciton. Meanwhile he 
obtained also the dependence of the soliton parameters on its velocity. When v< vo and 
v approaches v0 (v0 is the sound speed of protein molecules), the nonlinear interaction 
energy increases. At sufϐiciently high temperatures, a loss of localization of Davydov 
soliton occurs. In this case the soliton energy increases and its size decreases.

Subsequently, L. Cruzeiro et al. [154,] used also the thermodynamic average 

Hamiltonian TH H 
 mentioned above, but 1 1int( )ex phH D H H H D    . From again 

*
n T
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
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and 
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nq
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


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
 

  they obtained the dynamic equations of n and nq , respectively, 

where * ( )nq qn n q q nU a a U    
     , which are all the nonlinear Schrodinger 

equations. They found further out the solutions of the two equations using numerical 

(a) (b) 

(c) 

Figure 27: The features of the soliton under the infl uence of different structure disorders, where (a) results in the 

case of 0.67<αK<2, ∆W=±3% W , △J=±1% J  ∆( 1 2  )=±1%( 1 2  ), ∆L= ±1% L  and ∆ε0=ε|βn|, ε=0.35meV, 

|βn|<0.5; (b) is the result in the case of 0.67<αK<2, ∆W=±6% W , △J=±1% J  ∆( 1 2  )=±2%( 1 2  ), ∆L= ±1%

L  and ∆ε0=ε|βn|, ε=0.1meV, |βn|<0.5; and (c) is the result when 0.67< αK <2, ∆W=±8% W , △J=±1% J  ∆( 1 2 

)=±3%( 1 2  ) and ∆L= ±1% L  and ∆ε0=ε|βn|, ε=0.1meV, |βn|<0.5.
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simulation method. The results obtained for the probability of an soliton excitation
2

n
at physiological temperature 310K are shown in ϐigure 28, where M=114mP , J=7.8cm-1 
and w=13N/m are used, but 0 =1666cm-1 is removed from the numerical calculations 
through a gauge transformation, the initial condition used are 2 2

24 24(0) (0) 0.5    
and (0) 0nq  . Figure 28(a), (b) and (c) are the results of 10 10

1 0.17  10  N,0.21  10  N      
and 100.23  10  N , respectively.

Figure 28(a) shows a case in which the initial excitation is completely dispersed 
after 10 psec.

Indeed, only dispersive waves, which travel at about 1/3 the maximum speed of 
sound in the chain [ 3

0 0=r w/M =3.7  10  m/secv  ] is formed and is not accompanied by 
any molecular displacement. They are therefore excitons. Excitons are generated 
which travel in opposite

directions in the chain and interfere with each other 10 psec afterwards. This 
interference is an artiϐicial phenomenon due to the periodic boundary conditions. Figure 
28(b) shows another situation in which part of the initial excitation is not dispersed 
and remains pinned in the same bonds where it was initially located. Finally, in ϐigure 
28(c), where most of the initial excitation is not dispersed but remains localized where 
it was put initially. This result shows that the continuous transition from dispersion 
(ϐigure 28(a) to a localized state (ϐigure 28(c)) of the initial excitation is observed at 
biological temperatures 310K. In this case, the consequence of increasing temperature 
is similar to that of increasing the nonlinearity, i.e., as temperature increases, the 
threshold for localization of the initial excitation decreases. Increasing the temperature 
thus produces a decrease in the effective dispersion, as was pointed out by Davydov 
[153]. Thus they obtained that the Davydov soliton is stable at 310 K.

Cruzeiro-Hansson et al[42,45,155]studied also the inϐluence of temperature 
of the system on the states of Davydov soliton. Their method is to determine an 
appropriate feature of the system, such as localization, number probability

 
2( )n t  

and amino acid’s displacement /2 /2 1( )N Nu u  , to select an appropriate observable 
Q capable of describing the feature, and to compute from Gibbs statistical-mechanics 
prescription the equilibrium average value of Q at physiological temperature region 
by [ exp( / )] / [exp( / )]B BQ dyd Tr Q H K T dyd Tr H K T        , where KB is the 
Boltzmann constant. The integrations are over all the vibrational coordinates and 
momenta, and the trace is over the quasiparticle states. Their results show that thermal 
destabilization is not associated with transitions to exciton states and that it involves 
instead disordered states with energies intermediate between these of the minimum 

(a) (b) 

(c ) 

Figure 28: The evolution of the probability of Davydov soliton in the time and space at 310K (see Cruzeiro et al, 
paper [45]).
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energy soliton state and those of the exciton states. A basic duality emerges regarding 
the effect of temperature on the stability of nonlinear structures: temperature is 
found to help the nonlinearity in certain parameter and temperature regimes by 
inducing disorder and to destroy the nonlinearity in other regimes, e.g., always at large 
temperatures as a consequence of Boltzmann equalization. Thus they obtained that 
the Davydov system exhibits “ universal” behavior at physiological temperatures.

In the meanwhile, Bolterauer [72,156] argued that their classical thermalization 
scheme should lead to incorrect results when applied to a quantum system. Bolterauer 
and other workers found the Davydov solitons to be stable at T =300 K.

As it is known, Davydov’s model yields indeed a compelling picture for the 
mechanism of bio-energy transport in protein molecules, but there are considerable 
controversy concerning whether the Davydov soliton is thermal stable at 300K and 
can provide a viable explanation for bio-energy transport. It is out of question that 
the thermal perturbations are expected to cause the Davydov soliton to decay into a 
delocalized state. The above simulations showed that the Davydov soliton is stable 
at 300K [153-154], but they were based on classical equations of motion which are 
likely to yield unreliable estimates for the stability of the Davydov’s soliton. Since the 
dynamical equations used in the simulations are not equivalent to the dingeroSchr   
equation, the stability of the soliton obtained by these numerical simulations is 
unavailable or unreliable.

Lawrence et al. [69,157], proposed a model incorporating exciton-phonon 
interaction as a mechanism for localizing and stabilizing energy transport in the long-
chain proteins. This is due to the fact that previous analytical and numerical studies 
[9-12,15,16,153,154] have not adequately addressed the effects of thermal phonons, 
which may act to disperse exciton energy. Thus they ϐinished a numerical calculation, 
in which they indicated that the excitations are strongly dispersed at physiological 
temperament. They think that the propagation of the exciton-phonon state at low 
temperatures makes a transition from a solitary wave mode to a stationary self-trapped 
mode as the coupling between excitons and phonons is increased. Thus they obtained 
a new result of calculations of exciton-normal-mode coupling in the formamide dimer, 
which indicate that more sophisticated models are necessary to yield the true coupling 
constant in proteins. Thus they calculated a parametric study of the Davydov model 
of energy transport in alpha-helical proteins. Previous investigations have shown that 
the Davydov model predicts that nonlinear interactions between phonons and amide-I 
excitations can stabilize the latter and produce a long-lived Davydov soliton, which 
propagates along the alpha-helix proteins. The dynamics of this solitary wave are 
approximately those of solitons described using the nonlinear Schr6dinger equation. 
However, the present study based on the new calculation extends these previous 
investigations by analyzing the effect of helix length and nonlinear coupling efϐiciency 
on the phonon spectrum in short and medium length alpha-helical segments. The 
phonon energy accompanying amide-I excitation shows periodic variation in time with 
ϐluctuations that follow three different time scales. The phonon spectrum is highly 
dependent upon chain length but a majority of the energy remains localized in normal 
mode vibrations even in the long chain alpha-helices. Variation of the phonon-exciton 
coupling coefϐicient changes the amplitudes but not the frequencies of the phonon 
spectrum. The computed spectra contain frequencies ranging from 200 GHz to 6 THz, 
and as the chain length is increased, the long period oscillations increase in amplitude. 
The most important prediction of their study, however, is that the dynamics predicted 
by the numerical calculations have more in common with dynamics described by 
using the Frohlich polaron model than by using the Davydov soliton. Thus, they ϐinally 
concluded that the relevance of the Davydov soliton mode, which was applied to energy 
transport in alpha-helical proteins, is questionable.
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Lomdahl et al. [158], investigated the temperature effect on the Davydov soliton 
through adding the damping force and noise force,  nn nf m u F t



    , into the discrete 
dynamic equation (20)of displacement of amino acids, ( )nu t , and let 0L    in 
Eq.(19). In accordance with statistical physics, the thermal noise term Fn(t) is related 
with the temperature of the systems, its correlation function can be represented by 

'/)()(2)0,0(),(  txTKMFtxF B , where ' is the damping constant, T is the 
temperature of the system. It is assumed that the random deviation of the noise obey 
the normal distribution with criterion deviation   and a zero expectation value. That 
is,

21( ) exp[ / 2 ]
2n nN F F 


 
,

where σ=2MKBTΓ/τ’,τ’is the time constant, and Γis the reciprocal time constant of 
the heat bath. It can be shown that 




L

r
nrn tXtF

1
]

2
1)([)(  , where Xnr(t) is a random number 

between 0 and 1. If we choose L=12, then the deviation of ]
2
1)([ tX ur  is 1/12, and the 

standard deviation of Fn(t) is  . The domain of the random noise force is just
6|)(| tFn .

In the meanwhile, they veriϐied numerically to high accuracy that over sufϐiciently 
long time intervals this gives for the mean kinetic energy  

2

n

1 1m u
2 2

n Bt NK T


 .

They used these equations to study the properties of solution of the dynamic 
equations by the soliton detector. To check the consistency of the result, the 
calculations were also done in the conventional microcanonical ensemble. The system 
was prepared at T=300K, it was then allowed to evolve only under the inϐluence of the 
dynamic equations. The result of these simulations shows that the Davydov soliton is 
instable at 300K and disappear in a few picoseconds as shown in ϐigure 29, which is 
similar with the results obtained by Lawrence et al. [69,157]. Lomdahl et al. [158], give 
further the states and features of Davydov soliton containing 2 2' 2n nn

Q D B B D 
 
and 

6 quanta under inϐluences of damping force and thermal noise at T=300K using the 
above method, which are shown in ϐigures 29,30, respectively. These results indicate 
clearly that the Davydov soliton formed in these conditions cannot still be thermally 
stable at biological temperature 300K l, whether it contains one quantum or two or six 
quanta.

On the other hand, Förner’s [150] used the above Lomhahl et al’s method, formulae 
and the fourth-order Runge-Kutta method [147-148] to calculate the changes of 
stability of the Davydov soliton with varying temperature of the system. They ϐind 
that the Davydov soliton is only thermally stable at T<40K, but begins to disperse at 
40K, and is destroyed completely at 300K, as shown in ϐigures 31-33. Therefore the 
Davydov soliton is not thermally stable at 300K; its critical temperature is only 40K. 
These are consistent with the analytic results [105-107].

Wang et al. [64], studied the effects of thermal perturbation on properties 

Figure 29: The soliton detector of Davydov model(Q’=2) at T=300K([69]).
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Figure 30: The soliton detector of Davydov model(Q’=6) at T=300K([69]).

Figure 31: The state of the Davydov soliton at 30K.

Figure 32: The state of Davydov soliton at 40K (See Ref.[150]) (See Ref.[150]).

Figure 33: The state of Davydov soliton at300K[150].

of Davydov soliton by quantum Monte Carlo approach. In this case, the thermal 
equilibrium expectation value of any physical observable Q in the canonical ensemble 
is give [ exp( )] / [exp( )Q Tr Q H Tr H     , which is formulated by Feynman’s 
path integral for the quantum propagator with imaginary time  . The partition 
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function exp( )]Z Tr H   can be calculated by ϐirst dividing the imaginary time   
into L intervals / L   . Between each pair of intervals they insert a complete set 
of basis states, representing all L-polygonal arcs through the Hilbert space connecting 
the initial and ϐinal imaginary times. The basis states are products of exciton number 
states and the position eigenstates of the lattice. Using the checkerboard decomposition 
technique, they separated the Davydov Hamiltonian in Eq.(1) into two parts, 
H=H2[Pn]+H1[un], which nnP M u



 , ( )nH P  contains all lattice momentum operators 
P and all exciton hopping terms from even-numbered sites, and ( )nH u contains all 
lattice position operators together with all exciton hopping terms from odd-numbered 
sites. Thus they found out.

2 21
1 1

1

1 1 1 1 2 1 1 1 1

exp{ [ ( ) ( ) ]} exp[ (
2 2

)] exp[ { [( ) ( ) )] ( )}]

L
ni ni

ni n i ni n n
ni nevenni n

n n n i n i n n n i ni n n n n n n
nodd

u uM wz du u u Tr J B B

B B u u B B u u B B J B B B B

 


 


 



    
       


     



      

 



,

Where in uni is the position of the nth lattice mass at the ith cut. The above formula 
is just the basis of quantum Monte Carlo simulation. To utilize this formula Wang et 
al gained the following conclusions: (1) A coherent structure exists for temperatures 
below 7 K; (2) the basic unit of this coherent structure is highly localized and bears 
a close resemblance to the Davydov soliton if discreteness corrections to the latter 
are taken into account; and (3) above 7 K thermal perturbation are effective in 
destroying the internal coherence of this basic unit, its destruction being essentially 
complete above 11. 2 K. These results are largely consistent with the above dynamical 
simulations of Lomdahl and Kerr based on 2D  ansatz states and Cottingham et al.’s 
straightforward quantum-mechanical perturbation calculation [66], in which the 
lifetime of the Davydov soliton obtained by using this method is too small (about 10-12  

10-13) to be useful in biological processes. A major difference is that their method gave 
quantum ϐluctuations, the equilibrium quantity is not seriously affected by quantum 
ϐluctuations, but it is likely that dynamical properties would be affected by the presence 
of intrinsic quantum noise.

At the same time, Förner[150] studied further the behaviors of the Davydov soliton 
using the

perturbation method, in which he diagonalize the Hamiltonian partially by 
Cottingham et al., way [66]. Thus the Hamiltonian of the systems is denoted as H=H0 
+V, here H0 is the diagonal part of H and V the non-diagonal part. Thus he treated V 
as a perturbation and thought that 2D is an exact eigenstate of H0 and calculated 
further the lifetime of Davydov soliton by ϐirst-order perturbation theory in a cyclic 
chain of 201 units using the symmetric interaction, where only pinned soliton were 
found numerically, in which 1 62 pN  ,w=13N/m, M=114mp, J=0.967meV,and

1( 9) sec [( 100) / ]n t A h n wJ    as the initial conditions are used. In Figure (34), 
exhibited the states and changes of the Davydov soliton and 2( ) /w t D  at 0.2meV 
as the time changes at 300K, where 2

2 0 1/ exp( / ) sec [( ) /D i t A h n n wJ    .These 
results indicate clearly that the Davydov soliton is still unstable at 300K.

Summarily, we cannot demonstrate still that the Davydove soliton is thermally 
stable, although many different techniques and methods of thermal perturbation of 
environment were used. Therefore we can conclude from the above investigations 
that the Davydov soliton is unstable at physiological temperature 300K, thus it cannot 
play an important role in biological processes of bio-energy transport in the protein 
molecules.

The infl uences of temperature of proteins on bio-energy transport in Pang’s 
model

The results in a single chain: Since protein molecules work always at a biological 
temperature of 300K, we should ϐirstly decide whether or not the thermal motion of the 
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lattice still permits soliton motion in such a case. In accordance with thermodynamic 
theory, from a C=O vibrational energy of ε0=3.28×10-20Nm and a temperature of 300K, 
one ϐinds that the Boltzmann factor is 3×10-4 in this case. This means that only three 
out of 10,000 excitons are excited in the thermal equilibrium at 300K. Then one can 
safely assume that the temperature of medium primarily affects soliton motion via 
only the lattice of the amino acid residue. Thus, prior to soliton commencement the 
system is in equilibrium with the temperature of environment and the lattice is in 
thermal motion (which can be described as a linear combination of its normal modes), 
while the exciton system is in its ground state. With soliton commencement a non-
equilibrium state is created, the state of the lattice changes, and the behavior of the 
soliton is inϐluenced by the thermal perturbation via the lattice. This amounts to 
assume that the time the soliton needs to travel through the protein is small compared 
to the time the temperature of environment needs to re-establish equilibrium with 
the system due to high velocity of the soliton. However, how do we represent the 
effect of the heat bath on the lattice? Here we [113-125] adopt the above Lomdahl 
and Kerr’s [64,158] and Lawrence and co-worker’s [69,157] method, which found that 
the Davydov soliton is destroyed at 300K by using its dynamic equations, to study the 
inϐluences of the temperature of the systems on bio-energy transport in Pang’s model. 
Thus we added the decay term 

.
nM u and random noise term, Fn(t), resulting from the 

temperature and damping of medium, into the displacement equation of the amino 
acid molecules, in Eq. (27), where

.
nM u and Fn(t) are decided by the above formulae, 

Г is a dissipation coefϐicient for the vibration of amino acids, which is about 108s-1 for 
the proteins. Thus we can study the inϐluences of dissipation force and random noise 
forces, arising from the heat bath, on the states of Pang’s soliton by the fourth-order 
Runge-Kutta method [147-148] .

When the soliton starts at t=0, the initial condition of an(o)=Asech[(n-n0)
2

1 2( ) / 4 wJ  ] is added in one end of the protein molecule, the lattice energy 
ϐluctuations associated with the environment are larger by roughly three orders of 
magnitude than the local lattice energies associated with the soliton motion, but the 
soliton can still moves through the chain completely undisturbed at the biological 
temperature (300K) as shown in ϐigure 35, where the above average values of the 
physical parameters of proteins were used. Therefore, despite the large lattice-energy 
ϐluctuations due to the heat bath, the nonlinear interaction between the lattice and the 
amide oscillators (excitons) is still able to stabilize the soliton, or in other words, the 
thermal perturbation at 300K cannot destroy Pang’s soliton. The state of the soliton 
in the case of a long time period (300ps) at 300K and a higher temperature of 310 
K as shown in ϐigures 36,37, respectively. These results [113-125] show clearly that 

Figure 34: The Davydov soliton detector plot at 300K (a) and Time evolution of w(t) at J=0.2meV(b) ([150]).
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the soliton in Pang’s model is thermally stable in the region between 300K to 310K. 
The lifetime of Pang’s soliton is at least about 300ps at 300K. This means that Pang’s 
soliton has a long enough lifetime enabling it to play an important role in biological 
processes. These results agree with analytic data in table In Eq.(19). However, at the 
high temperatures of 320K and 325K, Pang’s soliton disperses gradually as shown 
in ϐigure 38,39, respectively. Thus the critical temperature of Pang’s soliton is about 
325K. Therefore Pang’s soliton is thermally stable at 300K.These results are evidently 
different from those of Davydov soliton in ϐigures 31-33 obtained by FÖrner [150-152].

The results in  -helix protein molecules: For the α -helix protein molecules 
the inϐluences of biological temperature on the bio-energy transport can be studied 
in accordance with the above method, in which we still add the decay term nqM

.


and random noise term, Fn(t), resulting from the temperature into the displacement 
equation of the amino acid molecules in Eq.(31) according to the above way and 

Figure 35: The behavior of Pang’s soliton.

Figure 36: The state of Pang’s soliton through at 300K the time period of 300ps at 310K.

Figure 37: The state of Pang’s soliton at 310 K. 
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Lomdahl and Kerr’s method[64,158]. We found the soliton solution of the equations of 
motions in Eqs.(30) and (31) with decay effect and random noise force using the above 
method and the fourth-order Runge-Kutta method[147-148]. The results at 300K are 
shown in ϐigure 40 for the α -helix protein molecules with the above initial conditions, 
which are simultaneously linked on the ϐirst ends of the three channels. From this ϐigure 
we can see that the soliton in Pang’s model can still move along the three channels at a 
constant speed and amplitude without dispersion. So Pang’s soliton is thermally stable 
at 300K. In ϐigure 41 we also show the results of soliton motion at a long time period 
of 120Ps and large spacings of 1000 sites (i.e., 333 amino acid residues are contained 
in each channel) at 300K for the α -helix protein molecules, when the above initial 
conditions are simultaneously linked on the ϐirst ends of the three channels. We see 
from this ϐigure that the solitons are undisturbed in such conditions, and really move 
over a long time period and through large spacings along the protein molecular chains 
while retaining their amplitudes and velocities at bio-temperatures. In ϐigure 42 we 
plot the collision behaviors of the solitons with clock shapes, set up from opposite ends 
of the channels in the α -helix protein molecules, when the above initial conditions are 
simultaneously linked on the opposite ends of the three channels. From this ϐigure we 
see clearly that the initial two solitons with clock shapes, separating 100 amino acid 
spacings in each channel, collide with each other at about 16ps. After the collision, the 
two solitons in each channel go through each other still retaining their clock shapes 
and propagating toward and separately along the three chains.  

These results show clearly that although there are large lattice ϐluctuations in 
the protein molecules due to the inϐluence of temperature, the nonlinear interaction 
between the amino acids and excitons is still able to stabilize the soliton, therefore 
Pang’s soliton is very robust against thermal perturbation of the environment. Then, 
the lifetime of Pang’s soliton is, at least, 120Ps. This means that Pang’s soliton can play 
an important role in biological processes.

Figure 38: The state of Pang’s soliton at 320K.

Figure 39: The state of Pang’s soliton at 325K.
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Figure 40: The behaviors of Pang’s soliton.

Figure 41: The state of the soliton in long-time at biological temperature of 300K. motion at 300K.

Figure 42: The properties of collision of the solitons at 300K.

What does this mean? As mentioned above, the characteristic unit of time for the 
theories is 1 2 13

0 0 0/ ( / ) 0.98 10r v M W s
 

    , and 500/,100/ 00  rL  is a reasonable 
criterion for the soliton to be a possible mechanism for energy transport in proteins, 
where   is the lifetime of the soliton. ps300  means 1000/ 0  . Thus, Pang’s 
soliton is very thermally stable at 300K, i.e., Pang’s oliton has a long enough lifetime 
enabling it to play an important role in biological processes.

We studied also the changes of states of the solitons with increasing temperature. In 
ϐigure 43 we exhibit the transport properties of Pang’s soliton in the α-helix proteins at 
different temperatures of 295K, 305K, 310K, 315K, 320K and 325K, respectively. These 
ϐigures show that the amplitudes of the soliton decrease with increasing temperature, 
and it begins to disperse at 320K. This means that Pang’s soliton must expend a part 
of itself energy to retain and suppress the increasing destructive effect of thermal 
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perturbation arising from the rise in temperature of the system, thus its amplitude 
or energy does decrease. Thus we estimated that the critical temperature of Pang’s 
soliton is about 320K in this case. At the same time, we found that the transported 
velocity of Pang’s soliton also decreases with the increase in temperature of the system

In table 2 we give concrete data of these velocities of Pang’s soliton at different 
temperatures. Otherwise, the temperature-dependence of velocity of Pang’s soliton is 
shown in ϐigure 44. Here, the decrease in soliton velocity with increasing temperature 
is also obvious. Evidently, this is due to the enhancement of disordered thermal motion 
of the medium resulting from the rise in temperature, which increases the resistance 
of motion of the soliton. Thus, the velocity of Pang’s soliton necessarily decreases.

The above results of our investigation manifest clearly that the nonlinear 
interaction between the amino acids and excitons is still able to stabilize the soliton, 
although it undergoes destructive inϐluences due to increases of thermal perturbation. 
Therefore, the soliton is very robust against the inϐluence of thermal perturbation of 
the environment.

(a) (b) 

(c) (d) 

(e)  (f) 

Figure 43: The changes of state of the solitons with increasing temperatures of the α-helix protein molecules at 
temperatures of 295K(a), 305K(b), 310K(c) 315K(d), 320K(e) and 325K(f), respectively.

Figure 44: The temperature-dependence of velocity of the soliton excited in the -helix protein molecules.
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The simultaneous effects of structure nonuniformity, damping and 
temperature of protein molecules on the energy transport

The results in single chain protein in Pang’s model: However, the inϐluence of 
structure nonuniformity or disorder in the protein molecules on the Pang’s soliton has 
not been considered in the above calculations. In practice, the structure nonuniformity 
arising from the disorder in the mass sequence of amino acid molecules, side groups 
and imported impurities is always existent in the proteins. Therefore, it is quite 
necessary to further study the inϐluence of structure nonuniformity on Pang’s soliton 
in the region of 300-310K using the above method [114-125]. The behavior of Pang’s 
soliton is shown in ϐigure 45, when the disorder of the mass sequence is in the region 
of MMM k 267.0  , where JJ %5 , )(%5)( 2121   , 10%ww  
, 

n  0
and ε=0.4meV, |β|≤0.5, for T=300K, T=310K, T=315K and T=320K, 

respectively. These ϐigures show clearly that Pang’s soliton is still thermally stable at 
T<320K, but begins to disperse at T=320K. Thus, the critical temperature of Pang’s 
soliton is not more than 320K when structure nonuniformity exists. Therefore, we can 
conclude that Pang’s soliton is very robust against thermal perturbation and structure 
nonuniformity among protein molecules at biological temperatures.

The results in α-helix protein molecules with three channels in Pang’s model

At the same time, we continuously studied the inϐluence of structure nonuniformity 
of proteins on Pang’s soliton at the biological temperature of 300K in α-helix proteins 
using the same method mentioned above. In ϐigure 46, we plot the states of Pang’s 
soliton at T=300K, while the disorder of the mass sequence is in the region of 0.67 
< k <2, and 1 2 1 2( ) 4%( )        , 2%J J   , 4%ww   , n  0 , 
ε=0.5meV, | βn | ≤0.5 are existed. From these ϐigures we see clearly that Pang’s soliton is 
undisturbed and still thermally stable at 300K when these structure nonuniformities 
occur in the proteins. Therefore, we can conclude that Pang’s soliton is robust against 
thermal perturbation and structure nonuniformity of the α-helix protein molecules at 
biological temperatures. Thus, the soliton in Pang’s model [113-125] is a exact carrier 
for bio-energy transport in the α-helix protein molecules with three channels.

In ϐigure 47 we exhibit the transport properties of the soliton in the α-helix proteins 
at different temperatures of 300K, 310K, 315K and 320K, respectively, when the 

ϐluctuations of six parameters of structure are 0.67 2kM M M  , Δ( 21   )=±1%(

21   ), △J=±0.7% J , ΔW=±7% W , ΔL= ±0.8% L and n  0 , ε=0.4meV, |βn| 

(a)  (b) 

(c)  (d) 

Figure 45: The state of Pang’s soliton under the infl uence of disorder at 250.67 2M M M  , 5%J J   ,

1 2 1 2( ) 5%( )        , 10%ww   , 0 n    ,ε=0.41meV, |βn|<1, for T=300K(a), 

T=310K(b), T=315K(c), and T=320K(d).

Table 2: The values of velocity of the solitons in the α-helix protein molecules at different temperatures.
Temperature (K) 270 275 280 285 290 295 300 305 310 315 320 325
velocity(m/s) 1237 1230 1221 1215 1215 1208 1208 1199 1194 1194 1192 1191
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≤0.5. This ϐigure shows that the amplitudes of Pang’s soliton decrease with increasing 
temperature, and it begins to disperse at 315K. This manifests that the soliton must 
expend itself a part of energy to suppress the increase of destructive effect resulting 
from the thermal perturbation due to the lift of temperature of the systems, thus its 
amplitude or energy does depress. We drew from this result that the critical temperature 
of Pang’s soliton is about 315K in this condition. Obviously, decreases of the velocity 
of Pang’s soliton with increasing temperature are due to the enhancement of disorder 
thermal motion of medium, resulting from the lift of temperature, which increases the 
resistance of motion of the soliton. However, the Pabng’s soliton is still robust against 
the structure nonuniformity of the protein molecules and thermal perturbation and 
damping of the medium, thus its critical temperature can reach still 315K in this case. 
Thus we conclude that Pang’s soliton can really play an important role in the bio-
energy transport, Pang’s theory of bio-energy transport is really appropriate to the α 
-helix proteins, which is consistent with analytic results [105-107].

CONCLUSION

In this review article we must look at whether the theories including Davydov’s and 
Pang’s models are appropriate to the biological proteins in the living systems. This is 
due to the fact that these theoretical models were built based on a periodic, uniform 
and inϐinite proteins molecules, which are an ideal protein model and different from 
the biological proteins molecules in living systems. In this investigation the inϐluences 
of structure nonuniformity and disorder, side groups and imported impurities of 
protein chains as well as the thermal perturbation and damping of medium arising 

Figure 46: The states of Pang’s soliton under the infl uences of the structure nonuniformities of 0.67 2kM M M  ,

2%J J   , 1 2 1 2( ) 4%( )        , 4%w w   , 0 n    , ε=0.5meV, |βn| ≤0.5 at 300K in the  -helix 
proteins.

(a) (b) 

(c) (d) 

Figure 47: When the fl uctuations of structure parameters are 0.67 2kM M M  , △J=±0.7% J , ∆( 1 2  )=±1%(
1 2  ),∆W=±7% W , ∆L= ±0.8% L and 0 n    , ε=0.4meV, |βn| ≤0.5 the peculiarities of the soliton atT=300K(a), 

310K(b),315K(c) and 320K,respectively.
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from the biological temperature of the system on the bio-energy transport were 
studied carefully by many scientists using different techniques and methods in past 
thirty years. 

In this article we review systematically and completely the correctness of the 
theory of bio-energy transport in the biological proteins including Davydov’s and 
Pang’s models. These results provided in the review were obtained by numerical 
simulation techniques using various methods, for example, the average Hamiltonian 
way of thermal perturbation, fourth-order Runge-Kutta method, Monte Carlo method, 
quantum perturbed way and thermodynamic and statistical method, in which no 
approximations are used. However, we mainly inspect and check the validity and 
availability of Davydov model and Pang’s model in single chain protein molecules and 
α-helical protein molecules with three channels, respectively. Concretely speaking, we 
studied the four problems, i.e., the properties of bio-energy transport in uniform protein 
molecules; the inϐluence of structure nonuniformity on the bio-energy transport; the 
effects of temperature of systems on the bio-energy transport and the simultaneous 
effects of structure nonuniformity, damping and thermal perturbation of proteins 
on the bio-energy transport in a single chains and α-helical molecules. We conclude 
from these investigations that the Davydov soliton is not stable under the inϐluence 
of small structure noniniformity and extremely unstable at 300K under inϐluences 
of larger structure disorders, but Pang’s soliton is stable at physiologic temperature 
300K and very robust against these structure nonuniformities and the inϐluences of 
side groups, imported impurities and damping of medium. Accurately speaking, If the 
effects of thermal perturbation of medium on the soliton in nonuniform proteins is 
considered, the Pang’s soliton can transport over a larger spacing of 400 amino acids 
and has a longer lifetime of 300PS, and begins only to disperse at a higher temperature 
of 325 K and large structure nonuniformity in both a single chain and three chain 
protein molecules,. its critical temperature can reach 320K. in this case. Concretely 
speaking, for the nonuniform ϐluctuations of 0.67< αK <2, ΔW=±8% W , J=±1% J  
Δ( 21   )=±3%( 21   ) and ΔL= ±1% L  and Δε0=ε|βn|, ε=0.1meV, |βn|<0.5, 
Pang’s soliton is still stable in the α-helical protein molecules.. When the effects of 
structure nonuniformity and temperature are considered simultaneously, it has still 
high thermal stability and can transport also along the protein molecular chains 
retaining its amplitude, energy and velocity. However, the soliton begins to disperse 
in the larger ϐluctuations, for example, 0.67 2kM M M  , ΔW=±6% W , J=±1.3%
J , Δ( 21   )=±2%( 21   ),ΔL= ±1.5% L  and n  0 , ε=0.82meV, 

|βn| ≤0.5 at T=300K,or the temperatures higher than 315K and the ϐluctuations of 
0.67 2kM M M  , Δ( 21   )=±1%( 21   ), J=±0.7% J , ΔW=±7% W , 
ΔL= ±0.8% L and n  0 , ε=0.4meV, |βn| ≤0.5. Its critical temperature is 315 K 
in this condition. These results are similar with analytic conclusions [105-107]. Thus, 
we can conclude that the soliton in Pang’s model is exactly a carrier of the bio-energy 
transport, Pang’s theory is appropriate to  α-helical protein molecules.
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