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Background
Post-translational modiϐication (PTM) refers to the covalent and enzymatic 

modiϐication of proteins during or after protein biosynthesis. In the protein biosynthesis 
process, the ribosomal mRNA is translated into polypeptide chains, which may further 
undergo PTM to form the product of mature protein [1]. PTM is a common biological 
mechanism of both eukaryotic and prokaryotic organisms, which regulates the protein 
functions, the proteolytic cleavage of regulatory subunits or the degradation of entire 
proteins and affects all aspects of cellular life. The PTM of a protein can also determine 
the cell signaling state, turnover, localization, and interactions with other proteins [2]. 
Therefore, the analysis of proteins and their PTMs are particularly important for the 
study of heart disease, cancer, neurodegenerative diseases and diabetes [3,4]. Although 
the characterization of PTMs gets invaluable insight into the cellular functions in 
etiological processes, there are still challenges. Technically, the major challenges in 
studying PTMs are the development of speciϐic detection and puriϐication methods.

The PTMs of proteins have been detected by a variety of experimental techniques 
including the mass spectrometry (MS) [5,6], liquid chromatography [7], radioactive 
chemical method [8], chromatin immune precipitation (ChIP) [9], western blotting [10], 
and eastern blotting [7]. The MS technique is one of the mainstay routes in detecting 
PTMs in a high-throughput manner. The new MS and capillary liquid chromatography 
instrumentation have made revolutionary advance in enrichment strategies in our 
growing knowledge of various PTMs [11]. The last decade of the actual description of 
many PTMs complexity has emerged through the diverse technologies and thousands 
of precise modiϐication sites can now be identiϐied with high conϐidence [12-20]. A 
similar strategy of fragmentation for PTM identiϐication is the beam-type collision-
induced dissociation, also called higher energy collisional dissociation [21]. These 
types of fragmentation are characterized by the higher activation energy. Most of the 
fragmentation methods of precursor ions are based on the radical anions or thermal 
electrons [22]. These methods are advantageous over collisionally activated dissociation 
methods for detecting the unstable PTMs (e.g. O-GlcNAc and phosphorylation), due to 
the peptide support fragmentation method is effectively independent of the amino acid 
sequence [23-25]. To date, more than 350 types of PTMs have been experimentally 
discovered in vivo [26]. The common PTMs are phosphorylation, ubiquitination, 
succinylation, acetylation, pupylation, sumoylation, glycosylation, and so on. In 
addition, pupylation referring to the modiϐication of lysine residues with a prokaryotic, 
ubiquitin-like protein (i.e. Pup) is another PTM in bacteria.

In general, the experimental analysis of PTMs often requires labor-intensive 
sample preparations and hazardous or expensive chemical reagents. For instance, 
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in the radioactive assay in the kinase based methods are often separated from non-
radioactive ATP by the kinase assay and generates radioactive waste [8]. Since most 
of the radioactive substance deal a short half-life, the fresh reagent must be frequently 
required for identifying PTMs. And sometimes, the substrate concentration of assay is 
often much higher than the expected substrate concentrations [27]. In summary, the 
identiϐication of PTMs by the experimental techniques is laborious, time-consuming 
and usually expensive. As an alternative, the computational methods are more efϐicient 
for identifying large-scale novel PTM substrates.

The last several decades have been remarkable progress in the identiϐication 
and functional analysis of PTMs in proteins. The PTMs play a vital role in protein 
folding, protein function, and interactions with other proteins [28,29]. Due to the 
important biological functions of protein PTMs, it is very important to analyze and 
understand the function of PTMs. In contrast to the traditional experimental methods, 
computational analysis of PTMs has also been an attractive and alternative approach 
due to its accuracy, cost-effective and high-speed. The computational tools can narrow 
down the number of potential candidates and rapidly generate useful information for 
investigating further experimental approach. Thus far, the prediction of protein PTMs 
is an important research topic in the ϐield of protein bioinformatics. Although the great 
progress has been made by employing various feature representation and statistical 
learning approaches with numerous feature vectors, the problem is still far from being 
solved. An overview of protein PTM sites prediction is presented in ϐigure 1.

Feature representation

Feature representation is one of the most important steps for predicting PTM sites. 
Suitable features in the prediction model allow the precise prediction of protein PTMs. 
In general, these features refer to the description of the sequences and local structures 
around these protein functional sites. Ideally, the features can clearly distinguish 
PTM sites from the random modiϐication residues. In the real world, however, the 
feature of protein functional sites can also exist on the non-functional sites of proteins. 
In the prediction PTM sites, this speciϐic problem is particularly prominent due to 
the sequence diversity. For instance, some motifs are very weak and some are not 
available without the sequence evolutionary information [30-35]. To address this 

Figure 1: A brief fl owchart template for computational prediction PTM sites. Firstly, the dataset was collected from 
the published database. Secondly, then need to be preprocessed the collected datasets for making proper positive 
and negative samples. Thirdly, the resulting encoded feature vectors were independently put into the statistical 
learning models to produce independent prediction scores. Finally, optimum performance scores were calculated 
by using cross-validation and parameter optimization, a confi dent cutoff was considered to identify the PTM site.
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problem, we can search PSI-BLAST [36-38] against the NCBI NR database to generate 
a proϐile (i.e. position-speciϐic scoring matrix (PSSM)). Such sequence proϐiles reϐlect 
the conservation and variation between protein sequences through the evolutionary 
information [39-42].

There are also numerous protein structure features proposed. For example, one 
can examine the amino acid solvent accessibility of PTM sites. Examining the residue 
interactions that uphold the stability of protein structures (including electrostatic 
interactions, hydrophobic interactions, van der Waals interactions, disulϐide bonds, 
hydrogen bonds, and so on) may be also helpful [43,44]. Additionally, the residues’ 
structural ϐlexibility information like root mean square deviation and B -factor 
is sometimes useful, too. Last but not least, some of the residue contact network 
parameters (betweenness, closeness, degree, and clustering coefϐicient) were used as 
features for protein PTM prediction [45]. In a real-world prediction task, note that the 
scientists usually use the integrated feature set to identify the protein PTM sites.

The statistical algorithm of PTM sites prediction

After determining the appropriate features, the next job is to use an appropriate 
machine learning algorithm to integrate these features for the prediction of protein 
PTM sites. It will improve the accuracy of the prediction if the prediction algorithm 
is appropriate. These prediction algorithms of PTM sites can be classiϐied into two 
categories, i.e. statistical probabilistic algorithms and machine learning algorithms. In 
following, we will discuss some of these algorithms.

Naïve bayes

Naïve Bayes is a predictive algorithm based on the statistical learning theory of 
Bayesian theorem. The advantage is that this algorithm is easy and simple to calculate. 
In Bayesian theorem, the posterior probability of a random event is the conditional 
probability, which is assigned after the relevant evidence been taken into account. 
Bayesian assumes that a property of a given value is affected by the other values. This 
assumption is not often established on the model, so its accuracy can be rejected for 
other properties of the class forecasting models, such as linear regression and logistic 
regression models. The majority of biologists think that for analyzing the biological 
data Naïve Bayes is an important algorithm [46]. Although, these methods affected by 
many outlier and do not handle the noise model [47]. In bioinformatics research, Naïve 
Bayes algorithms are widely used [48-50].

From more than 20 years ago, machine learning algorithms have been widely used 
for an interdisciplinary ϐield. There are related to the probability theory, approximation 
theory, convex analysis, complexity theory and other disciplines. To predict the unknown 
data, they have been widely used (http://en.wikipedia.org/wiki/Machine_learning). 
Since machine learning algorithms are highly automated, accurate and predictive, they 
have a very wide range of applications, such as the data mining, computer vision, natural 
language processing and biometrics. Although the performance of machine learning 
models shows a very good accuracy, they do not help the researchers to understand 
the deep mechanisms and biological signiϐicance [51]. Thus, sometimes the machine 
learning methods are criticized as the “black box” learning.

In early 1959, Arthur Lee Samuel deϐined the machine learning as “the ϐield of study 
that gives computers the ability to learn without being explicitly programmed” [52]. 
For the prediction of protein PTMs, some common machine learning algorithms are 
widely used such as support vector machine (SVM), artiϐicial neural network (ANN) 
and random forest (RF). Subsequently, we will discuss these three common machine 
learning algorithms.
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Random forest

RF is an ensemble supervised learning algorithm [53]. It can integrate multiple 
classiϐiers to improve the performances of the prediction [54-56]. It is well known 
that for a supervised classiϐier, the model classiϐication error is partly attributed to the 
different distributions between the training and the unknown samples (Figure 2A). 
In contrast, if sets have contained a certain degree of disturbance to the training set, 
which can determine the more general prediction and it can also remove the bias of 
a single classiϐier [57-58]. Several advantages of RF are as follows: 1) For the reliable 
individuals characteristic, RF can produce a highly accurate classiϐier. 2) It can handle 
a large number of input variables. 3) It can produce the importance of variable from a 
given class variable. 4) In the construction of the forest, it does not produce any bias 
results. 5) It contains a good way to estimate the loss or missing of data and if a large 
part of the information is lost, it can still maintain accuracy. 6) For the unbalanced 
classiϐication problem, it can take balance errors. 7) It can calculate the degree of 
intimacy in each case, such as in data mining for detecting the deviations (outlier) 
and it is also very useful for data visualization. 8) It can also be used in the extended 
unlabeled dataset, such as non-supervised or supervised clustering. 9) The learning 
process is very fast than other algorithms. It has a high predictive accuracy, good 
tolerance of outliers and noise. It has been widely used in the ϐield of bioinformatics 
research [59-63].

Support vector machine

In 1995, SVM was ϐirstly proposed by Corinna and Vapnik [64], which can solve 
the nonlinear and multidimensional pattern recognition problem. It uses a nonlinear 
transformation method and transforms low-dimensional data to high-dimensional 
feature space. It can look for a hyperplane in a high-dimensional space to maximize 
the margin between two types of data (Figure 2B). In other words, as long as suitable 
kernel functions, SVM can solve the high-dimensional classiϐication problem. In the 
theory of SVM, SVM with different kernel functions has led to different algorithms. The 
most commonly used SVM is radial basis function (RBF) kernel. Until now, many types 
of SVM software packages have been developed, such as SVM-Light (http://svmlight.
joachims.org/), LIBSVM [65], Gist [66], Weka [67], and so on.

Recently, in bioinformatics research, SVM has been widely used in various topics, 
including protein PTM prediction [38,68,69], protein residue contact prediction [70], 
protein fold recognition [71], protein secondary structure prediction [72], etc.

Artifi cial neural network

In 1969, after the publication of machine learning research by Marvin and Seymour 
the neural network research has been boomed [73]; they initially discovered the two 
key issues with the computational machines learning neural networks. The ϐirst one 
was the single-layer neural networks for processing on the circuit area. The second 
was the signiϐicant issue of computers for processing the power to effectively handle 
the long run time by large neural networks.

In machine learning and cognitive science approaches, the ANN is a family of 
statistical learning models and it is inspired by the biological neural networks (central 
nervous system of animals, in particular, the brain). This learning algorithm is used to 
estimate the approximate functions of input samples. ANN is also presented as systems 
of interconnected “neurons” which can exchange the messages between each other. 
The connections are generally numeric weighted and it can be tuned based on the 
internal experience. In general, ANN consists of three layers: input layer, hidden and 
output layer (Figure 2C). The potential law is needed for analyzing the independent 
variables and dependent variable in the ANN, which can calculate the new input data 
[74].
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In the ϐield of bioinformatics, ANNs have also a wide range of applications, such 
as protein functional sites prediction [75-77], protein secondary structure prediction 
[78,79] and tertiary structure prediction [80]. Common implementations of ANN 
software are FANN (http://leenissen.dk/Fann/WP/) and SNNS (http://www.ra.cs.
uni-tuebingen.de/SNNS/).

In summary, machine learning algorithm is a subϐield of computer science and 
statistics that evolved the study of pattern recognition and computational learning 
theory in artiϐicial intelligence. For PTM prediction machine learning algorithm is an 
essential step for testing the model performance.

Conclusions

The expansion and application of PTM site prediction are emerging as a promising 
ϐield in protein bioinformatics research. High-throughput omics-based techniques 
have been widely used in the study of PTMs. For our better understanding the function 
of PTMs, more accurate computational analysis is required. Combining experimental 
and computational schemes will certainly accelerate our knowledge by analysis of 
PTMs dataset.
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